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ABSTRACT 
 

Instance selection plays an important role in improving scalability of data mining algorithms, 

but it can also be used to improve the quality of the data mining results. In this dissertation 

we present a new optimization-based approach for instance selection that uses a genetic 

algorithm (GA) to select a subset of instances to produce a simpler decision tree with 

acceptable accuracy. The resultant trees are likely to be easier to comprehend and interpret by 

the decision maker and hence more useful in practice. We present numerical results for 

several difficult test datasets that indicate that GA-based instance selection can often reduce 

the size of the decision tree by an order of magnitude while still maintaining good prediction 

accuracy. The results suggest that GA-based instance selection works best for low entropy 

datasets. With higher entropy, there will be less benefit from instance selection. A 

comparison between GA and other heuristic approaches such as Rmhc (Random Mutation 

Hill Climbing) and simple construction heuristic, indicates that GA is able to obtain a good 

solution with low computation cost even for some large datasets. One advantage of instance 

selection is that it is able to increase the average instances associated with the leaves of the 

decision trees to avoid overfitting, thus instance selection can be used as an effective 

alternative to prune decision trees. Finally, the analysis on the selected instances reveals that 

instance selection helps to reduce outliers, reduce missing values, and select the most useful 

instances for separating classes. 
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CHAPTER 1.  INTRODUCTION 

1.1 Literature Review and Related Research 

In recent years, the field of data mining has seen an explosion of interest from both academia 

and industry. Driving this interest is the fact that data collection and storage has become 

easier and less expensive, so databases in modern enterprises are now often massive. These 

massive databases often contain a wealth of important data that traditional methods of 

analysis fail to transform into relevant knowledge. Specifically, meaningful knowledge is 

often hidden and unexpected, and hypothesis driven methods, such as on-line analytical 

processing and most statistical methods, will generally fail to uncover such knowledge. 

Inductive methods, which learn directly from the data without an a priori hypothesis, can 

uncover hidden patterns and knowledge (Olafsson et al. 2004). 

In this study, the term data mining is used to refer to all aspects of an automated or 

semi-automated process for extracting previously unknown and potentially useful knowledge 

and patterns from large databases. This field has become very popular and found various 

applications. The process of data mining involves numerous steps, including data integration 

and preprocessing, inductive learning from the instances in the prepared database, and 

evaluation and interpretation of the resulting patterns. Inductive learning, which may be 

considered as the core of the process, typically involves one or more of three learning tasks: 
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classification, data clustering, or association rule discovery. This study focuses on 

classification, which is one of the most common learning tasks. In classification, there is a 

specific attribute called the class attribute that can take a given number of values, and the 

goal is to induce a model that can be used to discriminate new data into classes according to 

those values. The induction is based on a labelled training set, where each instance is labelled 

according to the value of the class attribute. The objective of the classification is to first 

analyse the training data and develop an accurate description or a model for each class using 

the attributes available in the data. Such class descriptions are then used to classify future 

independent test data or to develop a better description for each class. The accuracy of the 

model is usually measured by the proportion of the number of correctly classified instances 

over the number of total instances in the test data. Many methods have been studied for 

classification (Fayad et al., 1996; Weiss and Kulikowski, 1991), including decision tree 

induction (Quinlan, 1993), support vector machines (Boser et al., 1992), neural networks 

(Ripley, 1996), and Bayesian networks (Jensen, 2001).   

Data preparation is one of the most important and time consuming phases in knowledge 

discovery (Reinartz, 2001). Preparation tasks (such as data selection, data cleaning, data 

construction, data integration, and data formatting) often determine the success of data 

mining engagements. In this research, the importance of instance selection is the primary 

focus because the size of current and future databases often exceeds the amount of data 

which current data mining algorithms can handle properly. Hence, we argue that by using 
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instance selection to reduce the data before data mining, existing data mining algorithms can 

be used to analyze the data.  

1.1.1 Instance Selection 

Instance selection has only recently been investigated from the perspective of selecting the 

best instances to improve model performance. Originally there were several reasons for 

instance selection. The first of them is to reduce the noise in original dataset because some 

learning algorithms may be noise-fragile (for example, linear discrimination methods (Duda 

et al. 1997)). The second reason to shrink the training set is to reduce the amount of 

computation, especially for instance-based learning algorithms (Ada et al. 1991) such as the 

k-nearest neighbours (Cover and Hart, 1967), or for very large training sets. 

Historically, instance selection to improve model performance has been focused on 

improving the efficiency of the nearest neighbour classifier. This was a clear motivation 

since storage requirements and computational costs make the nearest neighbour approach 

unsuitable for dealing with very large datasets. Therefore, quite a few of methods have 

therefore been proposed to select instances for the nearest neighbour approach. Several 

methods have been proposed involving sampling techniques.  

For the sampling approaches, perhaps the most important but very difficult issue is 

determining the appropriate sample size to maintain acceptable accuracy. This includes 

simple random sampling, stratified sampling by selecting the minor classes more frequently 
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in order to make the class values uniformly distributed, adaptive sampling in which 

sequential sampling is used to scale up knowledge discovery algorithms (Domingo et al. 

2001), progressive sampling by using progressively larger samples as long as model accuracy 

improves to obtain appropriate training set size (Provost et al. 2001), and the Rmhc method 

of Skalak (1994), which is one kind of random mutation hill climbing algorithm: First, subset 

S is formed by randomly selecting from training set T, containing a fixed number of instances. 

In each iteration, the algorithm interchanges an instance from S with another from T. The 

change is maintained if it offers better accuracy. A similar approach was used by Wilson 

(1997), except that instead of interchanging instances one at a time all of the instances in S 

are exchanged and the new candidate instances were kept if the accuracy improved. 

Additional methods based on nearest neighbour (NN) rules are listed in Table 1 (Cano et al. 

2003; Jankowski and GrochowskiL, 2004): 

Table 1 Different methods for instance selection based on NN rules  
Method Reference Brief description of the method 

CNN Hart (1968) 
Condensed Nearest Neighbor Rule: CNN tries to find a consistent subset, 
which correctly classifies all of the remaining points in the sample set.  

ENN Wilson (1972) 
Edited Nearest Neighbor: ENN removes a given instance if its class does not 
agree with the majority class of its neighbors. This removes noisy instances, 
as well as close border cases, leaving smoother decision boundaries. 

RENN Wilson (1972) 
Repeated Edited Nearest Neighbor: RENN applies ENN repeatedly as long 
as any changes are observed in the selected set. 

RNN Gates (1972) 
Reduced Nearest Neighbor: RNN starts from original training set and rejects 
only those instances that do not decrease accuracy. 

VSM Lowe (1995) 
It removes an instance if most of its nearest neighbors classify it correctly or 
incorrectly. 

Multiedit 
Devijver and  
Kittler (1982) 

It is a modification over ENN algorithm that guarantees the statistical 
independence in the prototype selected. 
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Table 1 Different methods for instance selection based on NN rules (continued) 
Method Reference Brief description of the method 

Shrink 
Kibbler and Aha 

(1987) 
Similar to the RNN, it retains border points, but unlike RNN, this algorithm 
is sensitive to noise. 

IB2 
Kibbler and Aha 

(1987) 
It is similar to CNN but selecting only those instances that cannot be 
correctly classified. IB2 is sensitive to noise. 

IB3 
Aha and Kibbler 

(1991) 

IB3 reduces the noise sensitivity of IB2 by only retaining acceptable 
misclassified instances. IB3 achieves greater data reductions and higher 
accuracy than IB2 on unseen instances. 

ICF 
Brighton and  

Mellish (2002) 
Iterative Case Filtering: ICF tries to select the instances which classify more 
prototypes correctly. Reachability and coverage are used in the selection. 

Drop1 
Wilson and 

Martinez (1997) 
Drop1 removes instance x from the training set if it does not change 
classification of instances from A(x) (only those instances depend on x). 

Drop2 
Wilson and 

Martinez (1997) 
Drop2 sorts instances according to their distances from the nearest opposite 
class instance. 

Drop3 
Wilson and 

Martinez (1997) 
Drop3 additionally runs the ENN algorithm before starting the Drop2 
algorithm. 

Another approach to instance selection is an evolutionary algorithm (EA). The success of 

evolutionary algorithms is largely due to their ability to exploit the information accumulated 

about an initially unknown search space. This is their key feature, particularly in large, 

complex, and poorly understood search spaces, where classical optimization methods do not 

work well. In such cases, they offer an alternative approach to problems requiring efficient 

and effective search techniques. Examples of such work includes the work of Reeves (2001), 

in which GAs were used for instance selection in order to improve the generalization of 

Radial Basis Function (RBF) networks. RBF networks have traditionally been associated 

with radial functions in a single-layer linear neural network. Ishibuchi et al. (2001) presented 

a genetic-algorithm-based instance and feature selection in a nearest neighbour classifier. The 
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results show that the generalization ability of nearest neighbour classifiers improves for 

datasets with large overlaps between different classes. 

Cano et al. (2003) described four models of EAs that were evolutionary instance selection 

algorithms, namely, two classical GA models including generational genetic algorithm and 

steady-state genetic algorithm, heterogeneous recombination and cataclysmic mutation (CHC) 

adaptive search algorithm, which is a classical model that introduces different features to 

obtain a trade-off between exploration and exploitation, and Population-Based Incremental 

Learning (PBIL), which is a specific EA designed for binary search spaces and attempts to 

explicitly maintain statistics about the search space to decide where to sample next. Their 

results show that EAs outperform the classical algorithms based on nearest neighbour rules 

and random sampling, simultaneously offering two main advantages: better data reduction 

percentages and higher classification accuracy.  

There are two key issues in using evolutionary algorithms for instance selection: the 

representation of the solutions and the definition of the fitness function. Prior research 

primarily used binary representation of the solution (Ramon, 2003; Cano 2004). A 

chromosome consists of genes (one for each instance in T) with two possible states: 0 and 1. 

If the gene is 1, then its associated instance is included in S (the subset of T) which represents 

the chromosome. If it is 0, then it is not included. A widely used fitness function is the 

combination of two values: the classification accuracy associated with the selected subset S 
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of instances and the percent reduction in instances of S with regards to T (Ramon, 2003; 

Cano 2004).  

Some unconventional instance selection methods have been used in specific applications. 

Lam et al. (2001) integrated instance-filtering and instance-averaging techniques for 

instance-based learning algorithms with good performance in data reduction and 

classification accuracy. Wang (2001) generated a set of representative instances based on a 

model of data built on hypertuples for nearest neighbour classifier and in some cases the 

selected instances outperformed the C5 decision tree classifier. Wright and Hodges (2001) 

incorporated domain knowledge (i.e. missing attributes and the relative importance of 

different attributes) into a multi-criteria decision-making technique to guide instance 

selection.  

1.1.2 Decision Trees 

Decision trees are a popular technique for classification. The main reason behind their 

popularity is their relative advantage in terms of interpretability. Their popularity is also 

aided by available implementations such as CART (Breiman et al., 1984) and C4.5 (Quinlan, 

1993). Several advantages of the decision tree as a classification tool have been pointed out 

in the literature (Maimon and Rokach, 2005): 
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l Decision tree is self-explanatory and easy to follow. Furthermore, they can be converted 

to a set of decision rules by forming a rule corresponding to each path from the root of 

the tree to each of its leaves. Thus, this representation is considered comprehensible. 

l Decision tree can handle both nominal and numerical attributes. 

l Decision tree is capable of handling datasets that may have errors or missing values. 

l Decision tree is considered to be a nonparametric method, that is, there are no 

assumptions about the space distribution and the classifier structure.  

A decision tree is expressed as a recursive partition of the instance space. Most decision 

tree induction algorithms construct a tree in a top-down manner by selecting attributes one at 

a time and splitting the data according to the values of those attributes. The most important 

attribute is selected as the top split node, and so forth. Some common splitting criteria 

include impurity-based criteria (Rokach and Maimon, 2005), information gain (Quinlan, 

1987), gain ratio (Quinlan, 1993), gini index (Breiman et al. 1984), likelihood-ratio 

Chi-squared statistics (Attneave, 1959), DKM criterion (Dietterich et al. 1996), distance 

measure (Lopez de Mantras, 1991), towing criterion (Breiman et al. 1984), orthogonal 

criterion (Fayyad and Irani, 1992), Kolmogorov-Smirnov criterion (Friedman, 1977), and 

AUC-splitting criteria (Ferri, et al. 2002). Comparative studies of the splitting criteria have 

been conducted by several researchers during the last thirty years, such as Baker and Jain 

(1976), Fayyad and Irani (1992), Loh and Shih (1997), and Lim et al. (2000). In most of the 

cases, the choice of splitting criteria will not make much difference on the tree performance.  
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For example, in C4.5 attributes are chosen to maximize the information gain ratio in the 

split (Quinlan, 1993). This is an entropy measure designed to increase the average class 

purity of the resulting subsets. The entropy function is defined by 

∑
=

−=
c

i
ii ppSEntropy

1
2log)(                                                         (1) 

where S represents the training data and pi is the proportion of S classified as class i. Then the 

information gain Gain(S,a) is defined as: 

})(:{
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)(),(
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where Values(a) represents all possible values for attribute a. Gain(S,a) implies the expected 

information provided about the classification from knowing the value of attribute a, but it 

tends to favor attributes that have a large number of values. For example, if we have an 

attribute a that has a distinct value for each instance, then 0)(
||
||

)(

=∑
∈ aValuesv

v
v SEntropy

S
S

, 

thus Gain(S,a) is maximal. To compensate for this, C4.5 algorithm uses the following ratio in 

equation (3) instead of Gain, here SplitInfo(S,a) is the information due to the split of S on the 

basis of the value of attribute a. Notice that the SplitInfo term discourages the selection of 

attributes with many uniformly distributed values.  
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Algorithms such as C4.5 and CART are computationally efficient and have proven very 

successful in practice. However, the greedy characteristic of decision trees leads to one 

disadvantage which is its over-sensitivity to the training data, to irrelevant attributes, and to 

noise (Quinlan, 1993). Also as decision trees use the “divide and conquer” method, they tend 

to perform well if a few highly relevant attributes exist, but less so if many complex 

interactions are present, in some cases the tree will contain several duplications of the same 

subtree in order to represent the classifier (Pagallo and Huassler, 1990).  

As for other classification methods, the quality of decision trees is primarily measured in 

terms of its accuracy in classifying new data. However, we argue that the complexity of the 

decision tree is also important and must be controlled. Naturally, decision-makers prefer less 

complex decision trees, since they may be considered more comprehensible. Usually the tree 

complexity is measured by one of the following metrics (Rokach and Maimon, 2005): the 

total number of nodes, total number of leaves, tree depth, and number of attributes used. 

According to Breiman et al. (1984), the tree complexity has a crucial effect on its accuracy. 

Furthermore, since interpretability is a major motivation in the use of decision trees the 

complexity of the tree becomes critical. If the tree is too complex then it may no longer be 

easily interpretable. Here we measure the complexity of the tree in terms of the total number 

of nodes, which we refer to as the size of the tree, and the quality of the tree is measured in 

terms of a combination of the accuracy and the size of the tree. So typically the goal is to find 
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the optimal decision tree by minimizing the prediction error as well as minimizing the 

number of nodes.  

Unfortunately finding the minimal decision tree consistent with the training set is an 

NP-hard problem (Hancock et al. 1996). Moreover, it has been shown that constructing a 

minimal binary tree with respect to the expected number of tests required for classifying an 

unseen instance is NP-complete (Hyafil and Rivest, 1976). Even finding the minimal 

equivalent decision tree for a given decision tree (Zantema and Bodlaender, 2000) or 

building the optimal decision tree from decision tables is known to be NP-hard (Naumov, 

1991) and heuristics must be applied. Kennedy et al. (1997) first developed a genetic 

algorithm for optimizing decision trees. In their approach, a binary tree is represented by a 

number of unit subtrees, each having a root node and two branches. In more recent work, Fu 

et al. (2003a; 2003b; 2004) also used genetic algorithms for this task. Their method uses C4.5 

to generate K trees as the initial population, and then exchanges the subtrees between trees 

(crossover) or within the same tree (mutation). At the end of a generation, logic checks and 

pruning are carried out to improve the decision tree. They show that the resulting tree 

performs better than C4.5 and the computation time only increases linearly as the size of the 

training and scoring combination increases. Furthermore, creating each tree only requires a 

small percent of data to generate high-quality decision trees. In related work, Dhar et al. 

(2000) use an adaptive resampling method where instead of using a complete decision tree as 
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the chromosomal unit, a chromosome is simply a rule, that is, any complete path from the 

root node of the tree to a leaf node.  

Previous research using genetic algorithms to optimize decision trees did not address 

controlling the growth of the tree, because the genetic algorithm does not evaluate the size of 

the tree, only the accuracy. GA may lead to a tree that becomes either overly complex or the 

search may settle to a too simple tree. To address this, Niimi and Tazaki (2000) combined 

genetic programming with an association rule algorithm for decision tree construction. In this 

approach, rules generated by the Apriori association rule discovery algorithm (Agrawal et al., 

1993) were used as the initial individual decision trees for a subsequent genetic programming 

algorithm. Another approach to improve the optimization of the decision tree is to improve 

the fitness function used by the genetic algorithm. Traditional fitness functions use the mean 

accuracy as the performance measure. Fu et al. (2003b) investigated the use of various 

percentiles of the distribution of classification accuracy, in place of the mean, and developed 

a genetic algorithm that simultaneously considers two fitness criteria. In other work, the 

utilization of a fitness function based on the J-Measure, which determines the information 

content of a tree, was used as a preference criterion to find the decision tree that classifies a 

set of instances in the best way (Folino et al., 2001). 

Previous research on optimizing decision trees is mainly focused on inducing good 

decision trees with high accuracy from given fixed data. However, recently a few researchers 

have considered optimizing the tree through instance selection. In particular, Chauchat and 
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Rakotomalala (2001) proposed a sampling strategy to build decision trees from a very large 

database with many continuous attributes by determining the sufficient sample size to obtain 

a decision tree as efficient as that built using all of the data. Yoon et al. (2001) employed 

tree-based sampling for incremental classification. In their method, the class distribution is 

represented by the weighted samples, which are extracted from the nodes of intermediate 

decision trees using a clustering technique. An intermediate classifier is built only on the 

incremental portion of the data. This approach is independent of data distribution and can be 

applied to large datasets. Cano et al. (2004) applied stratified CHC to the original training 

dataset and analyzed the selected training sets quality by C4.5 trees from the precision and 

interpretability perspectives. However, this work did not consider the size of the trees, which 

as we have noted before is an important factor to measure the interpretability of the tree. 

Moreover, it used the entire training dataset in the algorithm, which leads to the long 

processing time and may make it difficult to apply this approach to very large datasets. On 

the other hand, Endou and Zhao (2002) divided the training data into several subsets and then 

used a GA to evolve a small dataset that can cover the domain knowledge with reasonable 

accuracy. From this dataset, a small but good decision tree can be designed. While this 

method increases the efficiency of the algorithm, a key limitation is quite similar to the 

previous research, that is, by only pursuing the accuracy of the decision trees it does not 

control the growth of the trees. Therefore, during the search process the tree may become 

overly deep and complex, even though it has rather high accuracy. Another problem is that 
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Endou and Zhao’s algorithm tries to find the best subset, but sometimes this is not possible, 

so this approach is only valid for redundant datasets, which limits its applications. 

In our research, the goal is to optimize decision trees based on instance selection, but 

with the main objective of determining how such optimization can be applied to design small, 

more interpretable and high-quality decision trees. At the same time we expect that effective 

instance selection will increase the ability of a decision tree induction algorithm to deal with 

very large amounts of data. The methodology utilizes a genetic algorithm (GA) approach, 

which is similar to previous work in this area, but we also introduce new formulations for 

representing the solutions, defining the fitness function and choosing the various outputs. 

1.2 Hypotheses 

We will use the following notation in stating the hypotheses of this thesis: 

T   entire dataset 

S   instance subset of T 

|S|   size of S, i.e., number of instances in subset S 

)(Sψ   decision tree based on S 

r(i)   number of instances on leaf node i 

))(( Sl ψ   number of the leaf nodes in )(Sψ  

))(( SR ψ  Average Leaf Ratio (ALR) - average number of instances classified in leaf nodes 

))((ˆ Se ψ  estimated error rate of decision tree  
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Hypothesis 1 

GA-based instance selection will produce smaller and more interpretable 

decision trees while maintaining an acceptable level of accuracy.  

Since interpretability is a major issue in the use of decision trees, the size of the decision 

trees must be controlled, and to improve interpretability it may be necessary to reduce the 

tree sizes. We define improvements of instance selection as a reduction in the size of the 

decision tree, which is measured by the number of the nodes in the decision tree. Reductions 

in size should result in decision trees that are more easily interpreted, while maintaining 

adequate prediction accuracy. To formulate this problem mathematically, we let 

{ }nT xxx ,...,, 21=  be a training dataset of n instances, and the objective is to select the 

smallest subset TS ⊆  such that the tree )(Sψ  induced on this subset has the smallest tree 

size while at the same time maintains good accuracy. Therefore, generally speaking, instance 

selection can be formulated as a nonlinear integer programming multi-objective optimization 

problem. The decision variables determine which instances are selected 





=
otherwise

i
xi 0

    selected is  instance if1
   

and the optimization problem then becomes: 

 ( )
1,0

1)]((ˆ1[))((ˆ1s.t.
))((min

=
−×−≥−

∑

i

i

x
TeSe

xandSsize
εψψ

ψ
                                     (4) 

where )(ˆ ψe  is the estimate of the error rate for the decision tree ψ , so [1- )(ˆ ψe ] will be the 

estimated accuracy of the decision tree, and ε  is a parameter related to error tolerance, i.e. 
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we could set ε =5~10%. In order to solve this optimization problem, we have considered 

several different approaches as illustrated in Figure 1: 

 
Figure 1 Different approaches for instance selection 

As mentioned above, instance selection is a multi-objective non-linear integer programming 

problem. Given that we want to minimize the size of instance subset as well as the size of the 

decision tree, traditional integer programming methods such as branch and bound are not 

suitable for this problem. This is due to the large number of possible branches (2n) and more 

importantly, the inability to find a good relaxed problem because of the complexity of the 

decision trees. The implication is that it is difficult to acquire tight bounds, making 

branch-and-bound almost infeasible for relatively large datasets. In order to reduce the search 

space, we have developed a 2-phase Rmhc method (described in Chapter 3). The point-based 

Rmhc method is able to select a relatively best instance subset in finite steps but it is still 

quite time consuming. The subset-based Rmhc method greatly increases the speed but the 
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solution quality is worse than GA. It will be shown in Chapter 3 that a GA-based instance 

selection produce similar results as the point-based Rmhc method with much less 

computation cost (i.e., it is more efficient). On the other hand, simple construction heuristic 

is quite fast, but it is not as good as GA, especially for some large datasets, the tree’s size will 

be much larger than that from GA approach.  

Finally, GA-based instance selection turns out to be the best option in balancing the 

quality of the solutions and the speed of the algorithm. This is shown through the application 

of GA-based instance selection to several test problems, and a comparison of the original 

decision tree developed on the entire dataset with the tree from the selected instances. Using 

this approach, we have shown in Chapter 2 that for C4.5 decision trees, the size of the tree 

can be significantly reduced using instance selection, while the predictive accuracy is as 

good. 

 

Hypothesis 2 

Optimization-based instance selection prevents overfitting in decision tree 

learning.  

Overfitting is possible even when the training data are noise-free, especially when small 

numbers of instances are associated with leaf nodes. In this case, it is quite possible for 

coincidental regularities to occur (Mitchell, 1997), in which some attribute happens to 

partition the instances very well, despite being unrelated to the actual class attribute. 
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Whenever such coincidental regularities exist, there is a risk of overfitting. We introduce a 

measure average leaf ratio (ALR) ))(( SR ψ  that measures the average fraction of instances 

per leaf node, which is given by  

    %100
))((

||
)(

))((

))((

1 ×=
∑

=

Sl
S
ir

SR

Sl

i

ψ
ψ

ψ

.                                            (5) 

It is expected that the decision tree after instance selection should have higher value of 

))(( SR ψ than the decision tree based on original training data. With more number of 

instances associated with leaf nodes, the tree will stop growing earlier before it reaches the 

point where it perfectly classifies the training data, so there will be less chance for the 

occurring of overfitting. Another approach to avoiding overfitting in decision tree learning is 

to allow the tree to overfit the data, and then post-prune the tree. In Chapter 4, we will 

compare instance selection with several post-pruning techniques to show that instance 

selection can be used as an effective alternative for decision tree pruning.  

 

Hypothesis 3 

Number of instances, number of class values, and number of attributes will affect 

the performance of instance selection for improving decision tree. 

Datasets for data mining applications are usually large and may involve several million 

instances. Furthermore, each instance typically consists of ten to hundreds attributes. Using 

large datasets usually improves the accuracy of the classifier, but the enormity and 

complexity of the data involved in these applications makes the classification task 
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computationally intensive. Decision trees, for example, require several passes over the entire 

dataset and efficient computation using this method requires all the instances be stored in the 

main memory. This limitation and the interpretability issue generally limit decision trees to 

classifying small datasets. 

Therefore, empirical studies were performed to compare decision trees with and without 

instance selection. Parameters including number of instances, number of class values, and 

number of attributes influence were studied to determine their effect(s) on the performance of 

the algorithm in terms of computation cost, the decision tree’s size, the classification 

accuracy and the average leaf ratio (ALR). 

The remainder of the dissertation is organized as follows. In Chapter 2, we formulate the 

optimal instance selection problem, propose a genetic algorithm for finding heuristic 

solutions to this problem, and determine guidelines for how the GA approach should be 

implemented and when this approach works best. In Chapter 3, we compare the results 

between different instance selection approaches to demonstrate the effectiveness of 

GA-based instance selection. In Chapter 4, we illustrate how instance selection can be 

applied to decision tree pruning and provide a case study to show the benefits from instance 

selection. Finally, Chapter 5 contains some concluding remarks and future research 

directions. 
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CHAPTER 2.  METAHEURISTIC INSTANCE SELECTION 

2.1 Metaheuristic Method and Genetic Algorithm 

A metaheuristic is a heuristic method for solving a very general class of computational 

problems by combining user given black-box procedures--usually heuristics themselves--in 

an efficient way (Blum and Roli, 2003). Metaheuristics are commonly used to solve 

combinatorial optimization problems. The goal of combinatorial optimization is to find a set 

of discrete values for a set of decision variables that maximize (or minimize) an objective 

function. 

Metaheuristics track the current best solution and the current values for the set of decision 

variables (i.e., the current state). A new set of values are generated by an interchange or 

mutator procedure. Such interchanges are often probabilistic procedures. The set of new 

values produced by the mutator are in the neighborhood of the current set. More 

sophisticated metaheuristics maintain more than one set of values. Criteria are defined to 

select which sets will be retained and which sets will be discarded. New sets can be 

generated by some combination or crossover of two or more sets. Since the set of candidates 

is usually very large, metaheuristics are usually constrained by the maximum number of 

iterations. When unconstrained, some exact metaheuristics will eventually check all 

candidates, and use heuristic methods only to choose the order of enumeration. Therefore, 
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they will always find the true optimum, if the constraint is large enough. Other metaheuristics 

give only a weaker probabilistic guarantee, namely that, as the number of iterations 

approaches infinity, the probability of checking every candidate tends to be one. 

Most of the success of metaheuristic methods is due to their ability to exploit the 

information accumulated about an initially unknown search space (Blum and Roli, 2003). 

This is their key feature, particularly in large, complex, and poorly understood search spaces, 

where classical search tools (enumerative, heuristic, etc.) are inappropriate. In such cases, 

they offer a valid approach to problems requiring efficient and effective search techniques. 

Some well-known metaheuristics include Genetic Algorithm (Holland, 1975), Simulated 

Annealing (Kirkpatrick et al., 1983), and Tabu Search (Glover and Laguna, 1997).   

Genetic algorithms are a particular class of evolutionary algorithms that use techniques 

inspired by evolutionary biology such as inheritance, mutation, natural selection, and 

recombination (or crossover) (Goldberg, 1989). Key characteristics of GA include: 

l GA searches from a population of points, not a single point. 

l GA uses a fitness function (i.e., objective function), not derivatives or other auxiliary 

knowledge.  

l GA uses probabilistic transition rules, not deterministic rules. 

l GA is robust with respect to local minima or maxima. 

l GA works well on mixed discrete/continuous problems. 

l GA is stochastic and easy to implement. 
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A population of abstract representations (chromosomes) represents a solution to the 

problem. Usually, solutions are represented in binary as a sequence of 0s and 1s, but different 

encodings are also possible for specific applications. The evolution starts from a population 

of completely random individuals (i.e, the first generation). Each iteration represents a new 

generation in which the fitness of the whole population is evaluated; multiple individuals are 

randomly selected from the current population (based on their fitness) and modified (mutated 

or recombined) to form a new population, which becomes the next generation. A 

pseudo-code genetic algorithm is shown below (Goldberg, 1989): 

 

2.2 Genetic Algorithm for Instance Selection 

Our methodology uses GA similar to previous work in this area. The GA greatly reduces the 

search space in that it is only carried out on the “populations” instead of on individual 

instance. The objective function in (4) was modified to include the decision tree size and 

estimated error rate.  

CHOOSE INITIAL POPULATION 

REPEAT 

   Evaluate the individual fitnesses of a certain proportion of the population 

 Select pairs of best-ranking individuals to reproduce 

  Breed new generation through crossover and mutation 

UNTIL TERMINATING CONDITION 
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2.2.1 Fitness Function 

The definition of our fitness function incorporates some ideas from the concept of the 

information entropy and minimum description length principle (MDL, Rissanen 1985). 

Originally, information entropy proposed by Shannon (1948) can be derived by calculating 

the mathematical expectation of the amount of information contained in a digit from the 

information source. Shannon’s entropy measure came to be taken as a measure of the 

uncertainty about the realization of a random variable. It thus served as a proxy capturing the 

concept of information contained in a message as opposed to the portion of the message that 

is strictly determined (hence predictable) by inherent structures. There is a longstanding 

tradition in science that, given a choice of theories that are equally good the simplest theory 

should be chosen, which is known as Occam’s Razor (Ariew, 1976), and the minimum 

description length principle takes the stance that the best theory for a body of data is one that 

minimizes the size of the theory plus the amount of information necessary to specify the 

exceptions relative to the theory.  

In data mining, theory corresponds to the predictive model, so the size of the theory is the 

size of the data mining model and the amount of information for exceptions can be roughly 

measured as the estimated error rates of the data mining model. Therefore, we define the 

fitness function, f(S), in the form of entropy giving  


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Here K is an upper bound on the size of the tree (b is a constant, i.e. b=5) 

 bK += }populationcurrent in  size treemax{                                    (7) 

and we assign higher weight a to the size factor since our main goal is to create smaller and 

more easily interpreted decision trees. The optimization problem is thus to find the subset 

TSbest ⊆  that maximizes (6) above. Our proposed methodology is to use a GA 

implementation to find a heuristic solution, bestS~ , to this problem. 

To evaluate the performance of an instance subset S using (6), the error rate, or 

equivalently the accuracy, of )(Sψ must be estimated. We do this using a bootstrapping 

approach. Before the optimization starts, the original dataset is randomly divided into two 

separate training data *T  and test data *D , then *T  is sampled with replacement *Tn =  

times to generate the training set T, and the instances that are not selected form an 

independent test set TTD \*= . The chance that a particular instances will not be picked for 

the training set T is 
n

n

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logarithms. Thus for a reasonably large dataset 368.011 1 =≈
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 and the test set will 

contain about 36.8% of the instances, and the training set will contain about 63.2% of them, 

so the estimated error rate is given by (Efron, 1979) 

( )( ) ( )( ) ( )( )SeSeSe TD ψψψ ⋅+⋅= 368.0632.0ˆ ,                     (8) 
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where ( )( )SeD ψ  is the actual error when the tree )(Sψ  is applied to the test data D, and 

( )( )SeT ψ  is the error when it is applied to the training data T. Note that we have two 

different test datasets here, *D and D. D is used to evaluate the decision trees generated 

within the GA algorithm, while *D  is used to validate the decision tree for the final GA 

solution, bestS~ . This prevents possible bias from applying the decision trees to the same test 

set.  

2.2.2 Solution Representation 

The solution space must be defined in terms of what are called the chromosomes, which in 

most GA applications are binary strings. Here we take a slightly different approach and let gi 

denote the position of the ith training instance in the training dataset T. The chromosomal 

unit of each subset is defined as a vector [ ]NgggC ,,, 21 LL=  of integers, where N is the 

number of training instances in a subset and represents the length of the chromosomal unit. 

Here the sequence of gi does not have any influence on the GA process.  

   Note that one reason for not using the binary representation is that each instance would 

have a placeholder in the string, creating an intractable representation for large datasets. 

Another reason for why we do not use binary string is that the instances in each subset may 

be changeable (this is highly likely because of the GA operations). Therefore, with the use of 

integer chromosomes, each element in the integer vector chromosome can be easily replaced 
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by a specific training instance, and it is more natural and easier to implement the evolution 

process.  

2.2.3 GA Operations 

The GA search starts with an initial population { })0()0(
2

)0(
10 ,...,, MCCCP =  of chromosomes 

that is selected as follows. Given Tn =  instances we divide T into M subsets by sampling 

the training set N times without replacement to generate )0(
1C , where  MnN = , and then 

repeating this process M times to generate the remaining subsets. Starting with this initial 

population, the usual GA operations of selection, crossover, and mutation are applied to 

improve the population. These operations are described as follows.  

The most typical type of selection technique is called proportionate selection (e.g. 

roulette wheel selection) which is realized as a natural selection and can be defined as below 

(Davis 1991): In the kth generation, the individual )( k
iCS  is selected by some probability: 
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where ( ) { })(
][

)(
][ : k

ji
k
j CiCS ∈= x  is the set of all instances in the subset (chromosome) )(

][
k
jC , 

j=1,2,…,M and Q is a constant, so the individual with higher fitness value is more likely to 

be chosen and Mc)1( − individuals are selected into the next generation, where c is the 

crossover rate. Another type of selection is ranking selection, that is, all individuals of 

current population are ranked according to their fitness values and the fittest ones will be 

selected into the next generation. The comparison between these two selection techniques is 
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listed in Appendix E (Table A18 and A19). It can be seen that roulette wheel selection 

generally obtains much smaller tree size. The reason is that by adding some random factors 

to selection, GA will have wider searching space and thus it may find better instances.  

   Crossover is an exploitation technique in which two chromosomes in a population 

exchange a portion of their genes. This allows variations to be introduced to the new 

population and a heuristic search for a new localized state space. There are different 

techniques for crossover. The simplest technique is one-point crossover (Davis 1991) that 

randomly picks a crossover point and swaps the segments to the right of this point between 

the two chromosomes. Two-point crossover is commonly used to allow a wider range of 

combinations. This technique selects two crossover points and the segment between the two 

crossover points in a chromosome is then swapped with the segment with the same position 

in the other mating chromosome. Another technique that allows all combinations of 

crossover is uniform crossover (Davis 1991). Individual bits in the chromosome are 

compared between two parents, then the bits are swapped with a fixed probability, typically 

0.5. Comparing the three crossover techniques, one-point crossover has )1( −N  possible 

crossover combinations (where N is the gene length), two-point crossover has ∑
−

=

2

1

N

i
i  possible 

combinations, and uniform crossover has 2N possible combinations (Lam, 1994).  

In the past several years, GA researchers have preferred either two-point or uniform 

crossover. Syswerda (1989) demonstrated that a uniform crossover outperforms a one-point 
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crossover and two-point crossover in maintaining population diversity to search for the 

global optimum. Spears and DeJong (1991) observed that two-point crossover converges 

more quickly, but to a lower plateau than uniform crossover which converges more slowly to 

a better solution. Their results show that uniform crossover is better than two-point crossover 

for smaller values of the gene length N and the population size M, but they note just the 

opposite effect as N and M increase. This suggests a way to understand the role of 

multi-point crossover. With smaller populations and shorter gene length, more disruptive 

crossover, such as uniform or n-point (n>>2) may yield better results because they help 

overcome the limited information capacity of smaller populations and shorter gene length 

and the tendency for more homogeneity. However, with larger populations and longer gene 

length, less disruptive crossover operators (two-point crossover) are more likely to work 

better, as suggested by the theoretical analysis (Levine, 1994). As we are dealing with large 

datasets in instance selection, the gene length tends to be large, so two-point crossover seems 

a good choice. In Appendix D (Table A15, A16 and A17), we compare the results with 

different crossover operations, and it can be seen that one-point crossover works well for 

multi-class problems when only the best subset is chosen, two-point crossover and uniform 

crossover are pretty close, but two-point crossover tends to obtain the decision trees with 

slightly higher accuracies and relatively small tree sizes. So we choose two-point crossover.  

   The proportion of the number of chromosomes involved in crossover operation over the 

total number of chromosomes is defined as the crossover rate. The crossover rate is problem 
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dependent and there is no specific method to determine it. Studies of crossover rate suggest 

that a higher crossover rate yields more chances for chromosomes with better fitness to 

crossover more than once and hence faster convergence. Further studies show a decreasing 

crossover rate as the population size increases. Some results have suggested M=50~100 and 

c=0.6 (DeJong and Spears, 1991), and M=80 and c=0.45 (Grefenstette, 1986) as good values 

for offline performance. We tried three different crossover rates (0.6, 0.7 and 0.8) and the 

results are listed in Appendix A (Table A5, A6, A7 and A8). 

 
Figure 2 Operations of the genetic algorithm: (a) crossover (b) mutation 

In summarization, the crossover operator in our algorithm probabilistically selects cM/2 

pairs from Pk, chooses two random points and then swaps the parts between crossover points 
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among parent chromosomes (see Figure 2(a)). Meanwhile the instances corresponding to the 

position numbers will be exchanged between these two subsets. 

Nevertheless, using crossover alone is not an effective search for a global optimum. 

Particularly, when the population converges, every chromosome in the population is similar 

to every other chromosome, and hence crossover becomes less productive. So mutation is 

introduced to complement the weakness of crossover. Mutation is an exploration technique 

that is used to introduce new values into a chromosome by randomly flipping selected bits. 

Young (1990) demonstrated that combining mutation and crossover significantly 

outperformed and more robust than using either mutation or crossover alone. In our 

algorithm, if the element gi in the chromosomal unit is chosen to be mutated (the probability 

of mutation is determined by the mutation rate m), a new random number gi’ will be 

generated uniformly from {1,2,…,|T|} and then replaced for gi (see Figure 2(b)). Furthermore, 

the instance in position gi will be replaced by the new instance in position gi’. Note that the 

mutation rate should be kept very low (usually about 0.001) as a high mutation rate will 

destroy fit strings and degenerate the GA algorithm into a random walk. But Tate and Smith 

(1993) argue that the optimal mutation rates depend strongly on the choice of encoding, and 

problems requiring non-binary encoding may benefit from mutation rates much higher than 

those generally used with binary encodings. Our algorithm uses integer encoding, so we tried 

three different mutation rates with relatively higher values (0.01, 0.05 and 0.09) and the 

results are also listed in Appendix A (Table A5, A6, A7 and A8). 



www.manaraa.com

31 

2.2.4 Heuristic Solutions  

The GA operations are repeated for a given number of G generations, resulting in a final 

population { })()(
2

)(
1 ,...,, G

M
GG

G CCCP = , which is ranked according to the fitness as in (6).  
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The heuristic solution bestS~  to the best instance subset is then found from this final 

population. One approach is to simply let it correspond to all of the instances that are 

contained in the top chromosome, that is,  
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opt CiS ∈= x ,                             (11) 

But this may miss some good instances and we therefore also consider selecting all instances 

that are contained in at least one of the top y% of subsets (chromosomes), that is, 
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In the numerical experiments that follow we will consider { }75,50,25∈y .  

2.3 Experiment Results 

2.3.1 Experiment Setups 

The basic premise of this research is that instance selection can be used to improve decision 

tree induction and that the genetic algorithm methodology presented in Section 2.2 is 

effective in achieving such improvements. Furthermore, we define improvements as 

reduction in the size of the decision tree, which should result in decision trees that are more 
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easily interpreted, while maintaining adequate prediction accuracy. In order to validate this 

premise, some numerical experiments were conducted involving five challenging test 

problems, four of which are taken from the Machine Learning Repository of the University 

of California at Irvine, and a scheduling problem adopted from Li and Olafsson (2004). The 

characteristics of these five datasets are described in Table 2. Also the histograms of these 

five datasets before and after instance selection are shown in Appendix F (Figure A1~A12). 

Table 2 Test datasets 
Dataset Instances Attributes Classes Description 

Scheduling 7140 11 2 
This dataset is meant to discover the scheduling rules, and 
represent the result that enables its use for job scheduling. 

Sickness 3772 30 2 
The objective is to predict whether a patient has thyroid 
disease. 

Splice 3190 62 3 

Splice junctions are points on a DNA sequence at which 
superfluous DNA is removed during the process of protein 
creation in higher organisms. The problem posed in this 
dataset is to recognize, given a sequence of DNA, the       
boundaries between exons (the parts of the DNA sequence 
retained after splicing) and introns (the parts of the DNA 
sequence that are spliced out).  

Segment 2310 20 7 
The instances were drawn randomly from a database of 7 
outdoor images. The images were hand-segmented to create a 
classification. Each instance is a 3x3 region for every pixel. 

Letter 20000 17 26 

The objective is to identify each of a large number of 
black-and-white rectangular pixel displays as one of the 26 
capital letters in the English alphabet. The character images 
were based on 20 different fonts and each letter within these 
20 fonts was randomly distorted to produce a file of     
20,000 unique stimuli. Each stimulus was converted into 16 
primitive numerical attributes which were then scaled to fit 
into a range of integer values from 0 through 15.   
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All of the data mining algorithms, including the C4.5 decision tree induction algorithm, 

were implemented in the WEKA environment (Witten and Frank, 2000). The C4.5 algorithm 

was run using its default parameter settings in WEKA. It is of special interest to note that 

these settings include using the C4.5 pessimistic pruning with a subtree raising operation. 

Such pruning is essential to the construction of high quality decision trees. As an example, 

applying the C4.5 algorithm with the same parameter settings but without pruning to the 

“Splice” dataset results in a tree of size 3707 (number of nodes) with an estimated accuracy 

of 91.9% (estimated using 10-fold cross-validation). Adding pruning as described above 

results in a tree of size 229 with an estimated accuracy of 94.1%, that is, the size of the tree is 

reduced by an order of magnitude while the accuracy is increased. Similar results were found 

for the other datasets. 

For the genetic algorithm settings the number of generations is fixed as G = 20, the 

crossover rate is c = 0.6, the mutation rate is m = 0.09, the constant in selection operation is 

Q=2.5, and the weight for fitness function is a=6. These parameter settings were selected as 

they appear to perform well for this task as shown in Appendix A (Table A1~A12). The 

number of subsets in each generation is allowed to vary { }15,10,5∈M . The original dataset 

is randomly divided into one training set T* and one independent test set D*, for some smaller 

datasets (n<3000), approximately 1/4 instances are randomly chosen in test set and for larger 

datasets, 1/3 instances are chosen. This holdout procedure for creating independent test set is 

commonly used in evaluating the classification. 
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Instance selection is applied to the training set T*. The original decision tree from the 

entire data and the decision tree from the selected instances are both evaluated using the test 

data D*. For each experimental setting, ten replications are made and both the average and 

standard error are reported. The whole process of the experiment is illustrated in Figure 3. 

 
Figure 3 Design of the experiment on GA-based instance selection 

2.3.2 Effectiveness of GA-based Instance Selection 

We start with only selecting the best instance subset at the end of the GA run, that is, 

equation (11) is used to select the heuristic solution bestS~  to the instance selection problem. 

Table 3 compares the original decision trees from the entire data with the decision trees from 

the selected instances when the number of subsets is set to the average number (M=10).  
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Table 3 Results for best subset 

 

 

 

 

 

 

 

 

 

We observe that the reduction in the size of the decision tree ranges from 77.9% for the 

“Segment” dataset to 93.7% for the “Splice” dataset. Substantial reductions in the size of the 

decision tree are therefore obtained for all of the datasets. Meanwhile the reduction in 

accuracy is less than 10% for three of the five datasets. For two datasets the accuracy loss is 

clearly unacceptable (“Letter” dataset and “Splice” dataset), for one dataset the loss may be 

considered marginal (“Segment” datasets), and for two datasets the loss is relatively minor 

(“Scheduling” and “Sick” datasets). We note that the significant reduction in size of the 

decision trees is in addition to the reduction already achieved through pruning the tree (e.g., 

for the “Splice” dataset from 3707 for an unpruned tree, to 229 for a pruned tree and an 

average of 14.4 for a pruned tree with instance selection). 

 With Instance Selection Dataset 
 

Original Avg. S.E. Change 
Scheduling Accuracy 99.6 96.3 0.6 3.3% 

 Tree size  69.0 8.6 1.7 87.5% 
 ALR 2.9 22.6 3.5 679.3% 

Splice Accuracy 94.1 60.3 11.6 35.9% 
 Tree size  229.0 14.4 16.5 93.7% 
 ALR 0.7 65.0 50.0 9185.7% 

Segment Accuracy 96.9 88.4 1.2 8.8% 
 Tree size  77.0 17.0 1.4 77.9% 
 ALR 2.3 11.8 0.8 413.0% 

Letter Accuracy 88.0 62.4 2.5 29.1% 
 Tree size  2451.0 302.2 22.6 87.7% 
 ALR 0.1 0.7 0.1 600.0% 

Sick Accuracy 98.8 95.3 1.2 3.5% 
 Tree size  61.0 3.8 2.4 93.7% 
 ALR 4.8 61.2 35.4 1175.0% 
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Varying certain key parameters of the GA algorithm may be expected to affect the 

performance of the approach, and in Table 4 the results from varying the number of subsets 

{ }15,10,5∈M  are reported.  

Table 4 Results when number of subsets (M) is varied 
M=5 M=10 M=15 

Dataset  
Avg. S.E. Avg. S.E. Avg. S.E. 

Scheduling Accuracy 97.4 0.6 96.3 0.6 94.3 0.7 
 Tree size 17.4 2.3 8.6 1.7 3.8 2.4 
 ALR 12.3 1.8 22.6 3.5 59.9 35.0 

Splice Accuracy 82.9 3.2 60.3 11.6 52.9 1.6 
 Tree size 66.8 7.4 14.4 16.5 1.0 1.8 
 ALR 2.1 0.2 65.0 50.0 93.1 2.0 

Segment Accuracy 92.6 1.1 88.4 1.2 82.8 3.3 
 Tree size 22.2 2.0 17.0 1.4 13.4 1.0 
 ALR 9.5 0.9 11.8 0.8 14.4 0.7 

Letter Accuracy 71.1 3.7 62.4 2.5 54.8 1.7 
 Tree size 507.8 73.2 302.2 22.6 210.6 7.9 
 ALR 0.5 0.1 0.7 0.1 1.0 0.1 

Sick Accuracy 97.7 0.9 95.3 1.2 94.2 2.1 
 Tree size 6.6 0.8 3.8 2.4 2.2 1.2 
 ALR 29.3 3.6 61.2 35.4 73.5 26.3 

In order to find the changing trends of accuracy, tree size and ALR with different 

number of subsets M, we conducted a set of statistical two sample t-tests as shown in 

Appendix C (Table A14). The two-sample t-test (Snedecor and Cochran, 1989) is applied in 

testing the hypothesis concerning differences between the means of two populations, that is, 

we want to test the null hypothesis δ=− 21 uu , whereδ is a given constant, against one of the 

alternatives ,21 δ≠− uu   δ>− 21 uu  or δ<− 21 uu . Suppose that we are dealing with 

independent random samples of size m and n from two normal populations and m and n are 

small (m<30 and n<30) with unknown variances 21 σσ ≠ , we have: 



www.manaraa.com

37 

n
s

m
s

xxt
2

2
2
1

21

+

−−
=

δ  and 
( ) ( )

11

22
2

22
1

22
2

2
1

−
+

−











+

=

n
ns

m
ms

n
s

m
s

v                               (13) 

where 1x and 2x are the means of the two samples and s1 and s2 are the standard deviations. 

This expression for t is a value of a random variable having the t-distribution with v degrees 

of freedom. Thus, the appropriate critical regions of size a for testing the null hypothesis 

δ=− 21 uu  against the alternatives ,21 δ≠− uu  δ>− 21 uu  or δ<− 21 uu  under the 

given assumptions are, respectively, vvv tttttt ,,,2/  and ,, ααα −≤≥≥ .  

It can be quickly noted that as a rule from the statistical significance results in Appendix 

C (Table A14) that increasing M results in smaller trees that also have lower accuracy and 

higher ALR. This is quite intuitive. If the original training data is divided into more subsets, 

the number of instances in each subset will decrease, and with less training instances the 

decision trees will tend to be smaller but less accurate and the average leaf ratio will be larger. 

The best value of M appears to be application dependent. For the “Scheduling” and “Sick” 

datasets the smallest decision trees are obtained at M = 15 with only a minimal degradation in 

accuracy. For the “Splice” and “Segment” datasets, however, using M=5 results in 

significantly smaller trees on the average with relatively little loss in accuracy, while 

increasing M leads to substantial degradation in accuracy for more marginal reduction in the 

size of the tree. Another factor in the selection of M is the computation time, which will be 

discussed next. 
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The computational overhead of the instance selection is an important measure for the 

performance of our approach. The computation time in seconds is shown in Table 5 as a 

function of the number of subsets used (M) and the number of GA generations (G). In order 

to view the trends more intuitively, the computation time in seconds is also shown in Figure 

4 and Figure 5 for four datasets except “letter” data because of the scales of the values.  

Table 5 Calculation time with different M and G 

Dataset M 
Calculation time 

(G=20) 
G 

Calculation time 
(M=10) 

5 29.3 sec  20 47.9 sec 

Scheduling 10 
15 

47.9 sec 

72.3 sec 

 30 
 40 

67.4 sec 

85.8 sec 

Splice 
5 
10 
15 

53.3 sec 

55.7 sec 

72.7 sec 

 20 
30 

40 

55.7 sec 

65.0 sec 

74.0 sec 

Segment 
5 
10 
15 

25.3 sec 

34.4 sec 

46.9 sec 

 20 
30 

40 

34.4 sec 

48.1 sec 

64.6 sec 

Letter 
5 
10 
15 

215.5 sec 

329.0 sec 

541.3 sec 

 20 
30 

40 

329.0 sec 

641.8 sec 

974.4 sec 

Sick 
5 
10 
15 

24.9 sec 

37.8 sec 

54.6 sec 

 20 
30 

40 

37.8 sec 

53.8 sec 

71.1 sec 

For scheduling data, as an example, the time it takes to solve the problem is on the scale 

of approximately half of a minute to about 2 minutes, depending on the setting of M and the 

number of GA generations (G).  
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Figure 4 Computation time with different number of generations (G) 
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Figure 5 Computation time with different number of subsets (M) 
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As expected, the computation time increases in both variables as shown in Figure 4 and 5, 

with a linear growth in the number of generations G and an apparently faster growth in the 

number of subsets M. This is intuitive, since more subsets imply larger space for the GA 

algorithm to explore, and hence it can be expected that this is one of the main factors 

determining the computation time. In particular, the computation time is quite similar for M = 

5 and M = 10, but if M = 15, the computation time will increase obviously, especially for the 

larger dataset. Therefore, it is recommended to choose M as relatively small, e.g. M ≤ 10. In 

our following experiments, M is set as 10. 

Another factor that will affect the final results is the part of the final GA population that 

is selected to induce the final decision tree. In the results reported above we simply select the 

best subset and use only this subset, that is, )(~~ opt
bestbest SS =  according to equation (11). 

However, as noted above it might be beneficial to use instances that are included in several 

of the best subsets. Table 6 shows the results for the decision trees when the instances are 

varied from just the best subset to all the instances that are contained in the top y% of subsets, 

that is, %)(~~ y
bestbest SS =  according to equation (12), where }75,50,25{∈y .  
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Table 6 Results when fraction of selected instances is varied 

Best Top 25% Top 50% Top 75% 
Dataset  

Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 
Scheduling Accuracy 96.3 0.6 98.0 0.5 98.6 0.4 98.8 0.4 

 Tree size 8.6 1.7 27.8 3.8 41.0 3.5 45.4 4.2 
 ALR 22.6 3.5 7.1 0.9 4.8 0.4 4.3 0.4 

Splice Accuracy 60.3 11.6 85.7 2.0 91.2 1.3 92.8 0.8 
 Tree size 14.4 16.5 71.8 19.0 116.2 9.3 146.2 6.7 
 ALR 65.0 50.0 1.9 0.5 1.1 0.1 0.9 0.0 

Segment Accuracy 88.4 1.2 92.6 0.8 94.8 1.3 95.2 0.4 
 Tree size 17.0 1.4 33.4 3.3 47.8 2.3 53.4 4.7 
 ALR 11.8 0.8 5.9 0.6 4.1 0.2 3.7 0.3 

Letter Accuracy 62.4 2.5 73.9 0.8 80.2 0.6 82.3 0.4 
 Tree size 302.2 22.6 623.0 7.9 1071.2 29.7 1244.3 15.6 
 ALR 0.7 0.1 0.3 0.0 0.2 0.0 0.2 0.0 

Sick Accuracy 95.3 1.2 98.0 0.7 98.5 0.5 98.6 0.4 
 Tree size 3.8 2.4 12.4 2.4 15.6 4.5 23.4 5.6 
 ALR 61.2 35.4 14.2 3.3 11.6 4.6 7.5 1.5 

The statistical significance results in Appendix C (Table A14) show that as y is increased, 

the average accuracy improves but the tree size increases as well, moreover, the average ratio 

drops. These results are not unexpected, as more instance are included the accuracy increases 

but the size of the decision tree will also grow. Therefore, sometimes it is beneficial to use an 

aggregation of subsets instead of just using the best one as the selected instance subset, that is, 

%)(~~ y
bestbest SS =  in order to obtain higher accuracy. It should be noted, however, that the 

number of distinct instances in these subsets is typically much less than the total size of the 

subsets. This can be observed from Table 7, which show the number of distinct instance in 

%)(~~ y
bestbest SS =  for }75,50,25{∈y . We also note that y = 50 seems to work well for these test 
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problems, since this results in decision trees with high accuracy (that is, close to the accuracy 

of the trees induced from original dataset) that are also relatively small. 

Table 7 Distinct instances in the output 
Fraction of Selected Instances (G=20) 

Dataset M 
Top 25% Top 50% Top 75% 

5 857.0 1564.2 2146.6 
Scheduling 10 

15 
860.1 
859.5 

1865.1 
1775.8 

2368.5 
2492.3 

Splice 
5 
10 
15 

384.0 
381.2 

384.3 

707.5 
837.4 

789.5 

968.6 
1079.2 

1103.8 

Segment 
5 
10 
15 

316.7 
314.9 

311.8 

574.2 
683.3 

643.6 

783.5 
873.2 

900.3 

Letter 
5 
10 
15 

2401.5 
2426.2 

2419.0 

4377.0 
5272.3 

4978.6 

5996.1 
6735.0 

6913.8 

Sick 
5 
10 
15 

456.1 
456.3 

451.8 

825.8 
986.2 

928.1 

1126.6 
1262.7 

1301.5 

It should be noted that while the GA optimization algorithm is always able to reduce the 

size of the decision trees, the quality of the trees is very much application dependent. For 

example, we note from Table 3 that for the “Scheduling” dataset it is possible to find a 

decision tree using only 10% of the instances where the accuracy is almost as good as the 

decision tree designed directly with all training instances, but the average size of the tree is 

8.6 versus 69.0 nodes. Similarly, the approach performs very well for the “Sick” dataset. One 

characteristic that these dataset have in common is that the class attribute only takes two 

values. On the other hand, our approach performs much worse for the “Letter” dataset where 
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the class attribute has 26 possible values. For these problems, it is beneficial to use an 

aggregation of subsets instead of just using the best one as the selected instance subset, that is, 

%)(~~ y
bestbest SS = . It appears reasonable to speculate that more class values, more data instances 

are needed to induce good decision trees. We will provide further discussions in 2.3.4. 

It is interesting to explore further on the average leaf ratio, since this measure provides 

some insights of the benefits from instance selection. The values of ALR before and after 

instance selection are compared in Table 8.  

Table 8 Results on ALR before/after instance selection 
Original data Instance selection 

Dataset 
|T| ))(( TR ψ   Output Average ))(( SR ψ  Change  

Best 0.7 600.0% 
y=25 0.3 200.0% 
y=50 0.2 100.0% 

Letter 13333 0.1 

y=75 0.2 100.0% 
Best 65.0 9185.8% 
y=25 1.9 171.4% 
y=50 1.1 57.1% 

Splice 2126 0.7 

y=75 0.9 28.6% 
Best 11.8 413.0% 
y=25 5.9 156.5% 
y=50 4.1 78.2% 

Segment 1732 2.3 

y=75 3.7 60.9% 
Best 22.6 679.3% 
y=25 7.1 144.8% 
y=50 4.8 65.5% 

Scheduling 4760 2.9 

y=75 4.3 48.3% 
Best 61.2 1175.0% 
y=25 14.2 195.8% 
y=50 11.6 141.7% 

Sick 2514 4.8 

y=75 7.5 56.3% 
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From Table 8, it can be seen that the greatest improvement in Average Leaf Ratio occurs 

in the best subset, the change is from 413.0% for “Segment” data to 9185.8% for “Splice” 

data. However, with more instances included in the final output, the improvement in ALR 

drops quickly, when y=75%, the change is less than 100%. Therefore, with more instances in 

the output, there will be less benefit in ALR from instance selection. Furthermore, as noted 

above, for the multi-class problems such as “Letter” and “Splice” data, we need to use the 

aggregation of the subsets to obtain good accuracy, so for these problems, even though 

instance selection is still able to reduce the tree’s size and achieve acceptable accuracy, it 

does not act as well as the two-class problems for which the best subset is good enough. 

2.3.3 GA-Based Instance Selection for Large Datasets 

The application of instance selection to large datasets is essential in evaluating the value of 

this approach. To investigate the performance of the genetic algorithm for optimal instance 

selection in different scenarios (i.e., different number of attributes and different number of 

instances), we will for the purpose of limiting repetition focus only on the “Letter” and 

“Scheduling” problem. We note, however, that similar observations hold for the other test 

problems. Here the most important measure is computation cost since one concern is that the 

GA process may be slow in dealing with large datasets. 

Figure 6 shows the computation time with different number of attributes randomly 

selected from the “Letter” data and the number of attributes is varied from 5 to 17. 
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Meanwhile, for each setting, we tested different number of instances. For example, when the 

number of attributes is 5, the number of randomly selected instances is varied from 6000 to 

18,000. As expected, the computation time grows with more attributes. And the growth of 

computation time with different number of attributes is approximately linear when the 

number of instances is less than 12,000, but as the number of instance reaches 18,000, the 

growth of computation time is much faster.  

Figure 6 Computation time with different number of attributes 
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In order to verify the performance of our approach under some extreme situation, we use 

“Scheduling” data as an example. An attractive property of using the “Scheduling” dataset 

for this test of computation time is that we are able to generate any number of instances for 

this dataset while maintaining the structure. Figure 7 shows the effect increasing the number 

of the instances has on the computation time. It can be seen that increasing the number of 
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instances will increase the computation time, but this increase still appears to occur at a linear 

rate with the value of R2 close to 1. So our approach is capable of handling large datasets 

with acceptable computation cost.  

Figure 7 Computation time with different number of instances 
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2.3.4 The Influence of the Instance Entropy on Instance Selection 

From previous sections, we know that the number of class values has close relationship with 

the performance of instance selection. In this section, we will explore this further to 

investigate what is the major factor that influences the instance selection. Here we will use 

the measure of instance entropy ( )Entropy S  which is defined as: 

            ∑
=

−=
c

i
ii ppSEntropy

1
2log)(                                       (14) 
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where c is the number of classes and pi is the proportion of dataset S classified as class i. 

Note that the entropy is 0 if all members of S belong to the same class and the entropy is 

maximum when all classes are equally likely. Figure 8 shows the form of the entropy 

function relative to a boolean classification (c=2), as the proportion of one class varies 

between 0 and 1. 

Figure 8 The entropy function relative to a boolean classification 
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One interpretation of entropy from information theory is that it specifies the minimum 

number of bits of information needed to encode the classification of an arbitrary member of S 

(Mitchell, 1997). So ( )Entropy S  provides a measure of impurity in the dataset S. The higher 

the entropy is, the more diversity the data contains. Therefore, it is obvious that multi-class 

problem will have larger entropy than two-class problem. Next we will show that with higher 
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entropy, that is, with more impurity in the data, there will be less benefit from instance 

selection. Here we use top 25% subsets, since the results of top 25% subsets are more stable 

than those of the best subset with less deviation in ALR, accuracy and tree size. From Table 

9, it can be seen that though instance selection is able to obtain high ALR improvement and 

significant tree size reduction for multi-class problems, the decrease in accuracy is much 

higher than two-class problems, so in order to describe more diversity in multi-class problem, 

we will need more instances to induce good decision tree with acceptable accuracy.   

Table 9 The influence of entropy on different datasets 

Dataset 
Number of  
class values 

Entropy 
ALR improvement for  

Top 25% subset 
Accuracy decrease for 

Top 25% subset 
Tree size decrease for 

Top 25% subset 
Letter 26 4.70 200.0% 16.0% 74.6% 
Splice 3 1.48 174.4% 8.9% 68.6% 

Segment 7 2.81 156.5% 4.4% 56.6% 
Scheduling 2 0.32 144.8% 1.6% 59.7% 

Sick 2 0.33 195.8% 0.8% 79.7% 

Furthermore, it is interesting to investigate for a specific problem, how entropy will 

influence the performance of instance selection. Here we resample the instances to get 

different entropy values. The resample bias determines whether to use bias towards a uniform 

class. A value of 0 leaves the class distribution as it is, while a value of 1 ensures the class 

distribution is uniform in the output data. Considering that with more class values, there will 

be less difference in the entropy values out of resampling, for example, the entropy of the 

“Segment” dataset with seven class values is around 2.81 no matter how the resample bias is 

changed, our experiments are only focused on “Sick”, “Scheduling” and “Splice” data with 

no more than three class values. Table 10 and 11 list the results from different entropies.  
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Table 10 The influence of entropy on two-class problem (scheduling and sick datasets) 

ALR improvement for  

Top 25% subset 

(higher is better) 

Accuracy decrease for 

Top 25% subset 

(lower is better) 

Tree size decrease for 

Top 25% subset 

(higher is better) 
Resample Bias Entropy 

Scheduling Sick Scheduling Sick Scheduling Sick 

0 0.33 144.8% 195.8% 1.6% 0.8% 59.7% 79.7% 

0.2 0.60 77.1% 180.4% 1.6% 1.8% 53.9% 76.7% 

0.4 0.79 70.0% 178.9% 1.6% 2.1% 51.0% 74.4% 

0.6 0.91 67.7% 124.4% 1.6% 2.1% 49.3% 68.8% 

0.8 0.98 66.7% 102.1% 1.9% 2.4% 44.7% 67.9% 

1.0 1.00 66.4% 93.8% 2.1% 2.9% 44.0% 65.6% 

Table 11 The influence of entropy on multi-class problem (splice dataset) 

Resample Bias Entropy 

ALR improvement for  

Top 25% subset 

(higher is better) 

Accuracy decrease for 

Top 25% subset 

(lower is better) 

Tree size decrease for 

Top 25% subset 

(higher is better) 

0 1.48 174.4% 8.9% 68.6% 

0.2 1.51 164.3% 8.8% 62.0% 

0.4 1.55 157.1% 8.8% 61.6% 

0.6 1.56 145.7% 9.0% 61.6% 

0.8 1.58 104.3% 9.1% 61.3% 

1.0 1.59 102.9% 9.5% 58.0% 

Note that it is better to have larger increase in ALR, less decrease in accuracy, and more 

reduction in tree size. It can be seen from Table 10 and 11 that with higher entropy in the 

data, there will be less improvement in the average leaf ratio and less reduction in the tree 

size as well as higher degradation in the classification accuracy. So generally speaking, 

higher entropy in the data will lead to less benefit from instance selection.
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 CHAPTER 3.  HEURISTIC INSTANCE SELECTION 

The goal of selecting an optimization algorithm for solving problems such as the instance 

selection problem is to find algorithms with provably low computation cost and good or 

optimal solution quality. However, sometimes these goals cannot be achieved simultaneously 

and therefore a heuristic is proposed as an algorithm that gives up one or both of these goals. 

For example, it may find pretty good solutions, but the search process is time consuming. On 

the other hand, some heuristic runs reasonably fast, but it may produce bad results. For many 

practical problems including instance selection problem, when finding the exact optimal 

solution is impossible, heuristic algorithm may be the only way to get good solutions in a 

reasonable amount of time. 

3.1 Greedy Heuristic Method 

A greedy heuristic method solves an optimization problem by finding locally optimal 

solutions. The algorithm is called “greedy” because it always takes the best immediate, or 

local, solution while finding an answer. As for our instance selection problem, using 

enumeration will find the optimal solution, but it will need to run n2  steps (n is the number of 

instances in original dataset T) to check all possible candidates since for each instance there 

will be two choices: select it or not. For some really small datasets (n<50), it is possible to 

use enumerative method, but as the number of instances increases, the computational cost 
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will grow up dramatically, which makes enumeration infeasible. Also branch-and-bound 

cannot be applied to this problem as discussed in Section 1.2. Therefore, greedy heuristic 

method may be a good way to obtain good solution. Here we have developed a new 2-phase 

Rmhc heuristic method for instance selection problem. The original Random Mutation Hill 

Climbing method (Mitchell et al., 1992) contains four steps as following: 

1. Choose a candidate at random. Call this “best-evaluated”. 

2. Choose a locus at random to flip. If the flip leads to an equal or higher objective value, 

then set “best-evaluated” to the resulting solution. 

3. Go to step 2 until an optimal solution has been found or a maximum number of 

evaluations has been performed. 

4. Return the current value of “best-evaluated”. 

Rmhc is a greedy heuristic since it always tried to find better objective value. As found by 

Mitchell et al. (1992), Rmhc outperforms genetic algorithm in some difficult optimization 

problems. We follow some basic ideas of Rmhc method and the main novelty of our method 

is trying to decompose the original optimization problem instead of trying to obtain the 

optimal solutions for the two objectives (minimizing the tree size and the instance subset size) 

simultaneously. As is shown in Figure 9, in Phase I, we start with randomly selecting a 

subset S from original dataset T to satisfy the accuracy constraint, that is, the decision tree 

built from this subset S should have good accuracy compared with the tree built from entire 

data T. This subset is the initial feasible solution. In each following iteration, the algorithm 
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interchanges an instance from S with another from T/S. The change is accepted if it offers 

smaller tree size and satisfies the accuracy constraint. Then in Phase II, we will gradually 

reduce the subset’s size without deteriorating the tree’s size and accuracy. The backward 

selection continues until no instance can be deleted from the current subset.  

 

Figure 9 Main steps of 2-phase Rmhc 

Previous research on applying Rmhc to instance selection problem normally stops after 

Phase I, while our 2-phase Rmhc continues in Phase II to search for smaller instance subset to 

obtain better solution. Some major steps of 2-phase Rmhc are described below: 

 

 

Start with S=Ø 

Use random sampling to find a 
feasible solution S 

Interchange the instances in S with those in T/ S, 
 the change is maintained if it yields smaller 

decision tree and it is feasible 

Discard the instances in S one by one,  
continue until no change happens in current iteration 

Phase I: Forward sampling 

Phase II: Backward selection 
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Phase I: Forward sampling 

1) Initialization: ∅=S , best instance subset ∅=0S , best tree size s0=0, initial subset size 

p=0; 

2) Sample without replacement to generate subset S;  

3) Check the accuracy of the decision tree from subset S to verify if it is a feasible solution: 

( )εψψ −×−≥− 1)]((1[))((1
^^

TeSeIf , the solution is feasible, let || Sp = , S0=S, and 

s0= ))(( Ssize ψ , go to step 4; else, go back to step 2 and acquire more samples; 

4) Interchange the instances in S with those out of S one at a time: Denote )(SI i as the ith 

instance in S and )( −SI j  as the jth instance in T/S.  Let )()( −= SISI ji , 

pTjpi −== ||,...,2,1,,...,2,1 ; 

5) Accept the interchange if 0))(( sSsize <ψ  and ( )εψψ −×−≥− 1)]((1[))((1
^^

TeSe , 

update SS =0  and s0= ))(( Ssize ψ , go back to step 4; else reject the interchange, 

restore 0SS = , go back to step 4. 

Phase II: Backward selection 

6) Discard the instances in S one by one, that is, remove )(SI i  from S, i=1,2,…,p; 

7) Accept the deletion if 0))(( sSsize ≤ψ  and ( )εψψ −×−≥− 1)]((1[))((1
^^

TeSe , update 

|| Sp = , SS =0  and s0= ))(( Ssize ψ , go back to step 6; else reject the deletion, 

restore 0SS = , go back to step 6; 

8) Continue until no changes happen in current iteration, output s0 and S0. 
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This heuristic method only searches part of the whole solution space so it does not 

guarantee finding the optimum. In Phase I, it runs )( pnp −×  steps. In phase II, under the 

best situation, that is, no instance is deleted at the first iteration, this method only needs to 

run p steps. Even considering the worst situation (only one instance is discarded in each 

iteration), it runs 
2

)1(1...)1( +×
=++−+

pppp  steps. So the total search steps of 2-phase 

Rmhc are reduced from n2  in enumeration to [
2

)1()(,)( +×
+−×+−×

pppnpppnp ], 

which converts the original NP-hard problem to a solvable polynomial problem, but it can be 

expected that this 2-phase Rmhc method is only good for median datasets, since for large 

datasets (n>5000), the computation cost is still too high.  

In order to increase the speed of 2-phase Rmhc method, it can be modified for individual 

subset instead of individual instance. For the subset-based Rmhc method, the original dataset 

T is randomly divided into M subsets in Phase I, and these subsets are sampled without 

replacement to generate the initial feasible solution containing P subsets. In each following 

iteration, the algorithm interchanges a subset from S with another from T/S instead of 

interchanging a single instance. Similarly, the change is accepted if it offers smaller tree size 

and satisfies the accuracy constraint. Then in Phase II, the backward selection continues until 

no subset can be deleted. Thus the search steps of subset-based Rmhc method are 





 +×

+−×+−×
2

)1()(,)( PPPMPPPMP . Since the values of P and M are much smaller 

than the values of p and n, the modified subset-based Rmhc method should run much faster 
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than the original point-based Rmhc method. We will compare these two approaches in 

Section 3.3. 

3.2 Simple Construction Heuristic  

The main idea of simple construction heuristic is starting with no instances selected and then 

trying to add instance subsets gradually based on the value of the objective function, which is 

defined as: 

     







+






 −=

))((
1log))((1log)(

^

Ssize
aSeSf

ψ
ψ , 1>a .                       (15) 

The objective function here is similar to the fitness function used in genetic algorithm, which 

is also the combination of the tree’s accuracy and its size. Figure 10 shows some major steps 

of this approach. 

0},,...,3,2,1{,', ==∅=∅= kMIIS

MSSS ,...,, 21

)( iSf
'/ IIi ∈

}'/),(max{arg* IIiSfi i ∈=
}{''},{ *

*
iIISSS i UU ==
1},/{

*
−== MMSTT i  

Figure 10 Main steps of simple construction heuristic method 
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As shown in Figure 10, in each iteration, we randomly divide the remaining instances 

into some subsets, build decision trees from each subset, calculate the objective values for all 

subsets, and then select the subset with the highest objective value until we have enough 

subsets. Next in Section 3.3, we will compare genetic algorithm with greedy heuristic and 

simple construction heuristic to show the strength of genetic algorithm. 

3.3 Experiment Results 

We have shown that GA is quite effective in Chapter 2, but how good is it compared to the 

other heuristic methods? Here we will compare GA search with 2-phase Rmhc greedy 

heuristic and simple construction heuristic. The objective function f(S) is taken from equation 

(15) and higher objective value is better. We start with the comparison between GA and 

2-phase Rmhc. Some results including the tree size, the selected subset size, the decision 

tree’s accuracy, the objective value and the computation time are listed in Table 12, and it 

can be seen that point-based Rmhc(p) finds better instance subset with smaller tree size thus 

resulting in higher objective value than GA considering its much wider search space. 

However, the strength of GA lies in its ability to obtain the close results with much less 

computation time. On the other hand, the subset-based Rmhc(s) is faster than GA as expected, 

but GA is better in obtaining smaller trees and instance subsets. 
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Table 12 GA vs. 2-phase Rmhc  
2-phase Rmhc(p) 2-phase Rmhc(s) GA Search 

Dataset 

(size) Subset size 
Tree 

size 
Accuracy 

Subset 

size 
Tree size 

Accuracy 

(%) 

Subset 

size 
Tree size Accuracy 

Letter 3966.0 1169.0 86.2 7998.0 1365.4 85.9 6735.0 1244.3 82.3 

Segment 94.3 23.7 93.9 692.0 37.8 94.3 381.2 33.4 92.6 

Scheduling 88.7 9.0 96.6 856.8 18.6 97.5 344.1 8.6 96.3 

Sick 5.0 3.0 96.6 251.0 7.0 97.1 251.0 3.8 95.3 

Splice 164.0 98.7 91.3 763.2 117.8 91.8 381.2 116.2 91.2 

2-phase Rmhc(p) 2-phase Rmhc(s) GA Search 
Dataset 

(size) 
Value of f(S) 

(higher is better) 
Time 

Value of f(S) 

(higher is better) 

Time 

(seconds) 
Value of f(S) 

Time 

(seconds) 

Letter -61.36 4 months -62.72 148.0 -61.95 329.0 

Segment -27.49 19.1 hours -31.53 3.0 -30.48 34.4 

Scheduling -19.07 23.7 hours -25.34 1.0 -18.68 47.9 

Sick -9.56 15.5 minutes -16.89 1.0 -11.63 37.8 

Splice -39.88 56.7 hours -41.40 3.0 -41.30 55.7 

From the results reported before it is clear that instance selection has a significant effect 

on the decision trees, and in particular for many datasets it is possible to significantly reduce 

the size of the tree without sacrificing much of the accuracy. A natural question to ask is how 

much of this is due to the size of selected instance subset and how much is due to the method 

by which they are selected (here the GA optimization). We thus compare the instance subsets 

selected using the GA approach to those selected using simple construction heuristic and 

simple random sampling. The results are reported in Table 13 and Table 14 for M = 10 and y 

= 0.5, that is, the size of the data is reduced to half of the original size. It can be seen that 

simple construction heuristic runs very fast, but the quality of the solution is unstable 

compared with simple random sampling. Particularly, it obtains smaller tree size on two 

datasets (“Letter” and “Scheduling”) but larger tree size on the other three datasets.  
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Table 13 GA vs. simple construction heuristic  
GA Search Simple construction heuristic 

Dataset 
Tree size Accuracy Tree size Accuracy 

Letter 1244.3 82.3 1526.6 87.7 

Segment 53.4 95.2 60.2 96.0 

Scheduling 27.8 98.0 56.2 99.3 
Sick 12.4 98.0 32.2 98.7 

Splice 146.2 92.8 810.0 93.3 
GA Search Simple construction heuristic (SIS) 

Dataset 
Value of f(S) Time (seconds) Value of f(S) Time (seconds) 

Letter -61.95 329.0 -63.65 53.0 

Segment -34.50 34.4 -35.53 2.8 

Scheduling -28.81 47.9 -34.89 1.3 
Sick -21.82 37.8 -30.07 1.5 

Splice -43.26 55.7 -58.07 2.5 
Table 14 GA vs. simple random sampling 

 Original GA Search Random Sampling 

 
Tree 
size 

Accuracy 
Value of 

f(S) 
Tree 
size 

Accuracy 
(%) 

Value of 

f(S) 
Tree 
size 

Accuracy 
Value of 

f(S) 
Scheduling 69.0 99.6 -36.65 27.8 98.0 -28.81 69.1 99.2 -36.68 

Splice 229.0 94.1 -47.12 146.2 92.8 -43.26 229.0 91.8 -47.16 
Segment 77.0 96.9 -37.65 53.4 95.2 -34.50 57.2 95.0 -35.10 

Letter 2451 88.0 -67.74 1244.3 82.3 -61.95 1579.4 83.7 -64.00 
Sick 61.0 98.8 -35.60 12.4 98.0 -21.82 24.0 98.1 -27.54 

Moreover, the results in Table 13 and 14 indicate that simple construction heuristic and 

simple random sampling have similar effects as the GA search, that is, for four out of the five 

test datasets the size of the tree is reduced if a random subset of half the instance is used 

instead of the whole set. Part of the effect of GA-based instance selection thus must be 

contributed to the simple fact that fewer instances are used after instance selection than 

before instance selection. However, the method by which the instances are selected is also 

clearly very important. For each of the datasets the GA search results in instance subsets that 

on the average give significantly smaller trees and higher objective values.



www.manaraa.com

59 

CHAPTER 4.  INSTANCE SELECTION FOR DECISION 

TREE PRUNING 

4.1 Decision Tree Pruning Techniques 

Decision tree pruning methods originally proposed in Breiman et al. (1984) have been shown 

in various studies that they can improve the generalization performance of a decision tree, 

especially in noisy domains. Another key motivation of pruning is “trading accuracy for 

simplicity” as presented in Bratko and Bohanec (1994). When the goal is to produce a 

sufficiently accurate compact decision tree, pruning is highly useful. There are various 

techniques for pruning decision trees, including cost-complexity pruning (Breiman et al., 

1984), minimum error pruning (Olaru and Wehenkel, 2003), pessimistic pruning (Quinlan, 

1993), optimal pruning (Bratko and Bohanec, 1994), minimum description length (MDL) 

pruning (Mehta et al. 1996), minimum message length pruning (Wallace and Patrick, 1993), 

and critical value pruning (Mingers, 1989). Several studies aim to compare the performance 

of different pruning techniques (Quinlan 1987; Mingers, 1989; Esposito et al. 1997). The 

results indicate that there is no pruning method that in any case outperforms other pruning 

methods. 

Generally speaking, these pruning techniques can be divided into two categories: 

Prepruning and Postpruning. Prepruning will try to decide when to stop developing subtrees 
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during the tree-building process, while postpruning is adopted by building the complete tree 

and pruning it afterward. It seems that prepruning is quite attractive because it may avoid all 

the work of developing unnecessary subtrees, however, postpruning does offer some 

advantages over prepruning in some “combination-lock” situation, that is, the situation where 

the correct combination of the two attribute values is very informative whereas the attributes 

taken individually are not. So most decision tree builders use postpruning techniques and it is 

still an open question whether prepruning strategies can perform as well. 

4.1.1 Postpruning Operations 

Two different operations have been involved for postpruning: subtree replacement and 

subtree raising (Witten and Frank, 2000). At each node, the learning scheme will decide 

whether to perform subtree replacement, subtree raising or leave the subtree unpruned. 

Subtree replacement is implemented by proceeding from the leaves and working back up 

toward the root as shown in Figure 11, (a) is the original decision tree and (b) shows the 

pruned tree. The subtree C in the original decision tree has three leave nodes: L1, L2, and L3. 

After subtree replacement, this subtree is replaced by a single leaf node L1.  
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Figure 11 Example of subtree replacement 

The second postpruning operation, subtree raising, is more complex. As illustrated in 

Figure 12, the entire subtree from C downward has been raised to replace the subtree B. Note 

that in this raising operation, it is necessary to reclassify the instances at the nodes L4 and L5 

into the new subtree C. So the children of that node L1’, L2’ and L3’ include not only the 

original children L1, L2 and L3 but also the instances covered by L4 and L5.  

 
Figure 12 Example of subtree raising 
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4.1.2 Frequently-used Postpruning Algorithms 

There are two broad classes of postpruning algorithms. The first class includes algorithms 

that use a separate set of instances for pruning, distinct from the dataset used for building the 

decision tree. For example, Quinlan (1987) proposed a reduced-error pruning technique that 

simply involves holding back some data and using it as an independent test set to estimate the 

error at each node. The subtree will be pruned if it provides better estimated accuracy on the 

test data. The obvious disadvantage of this approach is that the actual tree is built on less data. 

Another pruning technique, minimal cost-complexity pruning (Breiman et al. 1984), tries to 

find a series of trees that minimize a function that linearly combines the classification error 

and the number of leaves in the tree and cross-validation is used to select the best tree. In 

addition to the ad-hoc nature of cross-validation, this approach also suffers from the 

drawback that multiple candidate trees need to be generated, which can be computationally 

expensive.  

The second class of decision tree pruning algorithms, which include C4.5 pessimistic 

pruning (Quinlan, 1993) and MDL pruning (Mehta et al. 1996), uses the whole training data 

for decision tree generation and pruning. C4.5 pessimistic pruning tries to make some 

estimate of the error based on the training data itself. The idea is to consider the task of 

classification as a binomial experiment. Given a test set that contains n instances, let X be the 

number of instances incorrectly predicted by a model and q be the true error rate of the model. 

By modeling the prediction task as a binomial experiment, X has a binomial distribution with 
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mean qn ⋅  and variance )1( qqn −⋅⋅ . It can be shown that the empirical error rate, n
Xf = , 

also has a binomial distribution with mean q and variance n
qq )1( −⋅ (Miller and Miller, 

2004). Although the binomial distribution can be used to estimate the confidence interval for 

f, it is often approximated by a normal distribution when n is sufficiently large. Based on the 

normal distribution, the following confidence interval for f can be derived as (Miller and 

Miller, 2004): 

ααα −=

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qfZP                                (16) 

where 2/αZ  and 2/1 α−Z  are the upper and lower bounds obtained from a standard normal 

distribution at confidence level ( α−1 ). Since a standard normal distribution is symmetric 

around Z = 0, it follows that 2/αZ = 2/1 α−Z . Rearranging this inequality leads to the following 

confidence interval for q: 
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which for default α =25% used in C4.5 pessimistic pruning, 2/αZ =1.15. Higher α  will 

lead to higher classification accuracy but larger tree size, and α =25% seems an appropriate 

default value which is able to obtain good accuracy without over-pruning from some research 

results (Quinlan, 1993). And the upper bound for q is used as a pessimistic estimate for the 
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error rate e at the node as 
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= . Similarly the subtree will 

be pruned if the pruning tree yields lower estimated error rate. 

                            

MDL pruning, on the other hand, considers the following scenario: given the description 

of the complete decision tree and the description of all training instances in terms of values 

for all attributes and the class label, find the pruned tree that minimizes the description length 

of the remaining structure of the tree plus the description length of the classification of all 

instances given the pruned tree. Therefore, the subtree is pruned if  

     ( ) 0MDL node Prior_MDL(node)  Post_MDL(subtree(node))= − ≤             (18) 

The algorithm proceeds bottom-up from leaves toward the root of the tree and for each 

internal node makes a decision whether to prune the subtree or not by the ( ) 0MDL node ≤  

criterion. A simple MDL measure is given by Kononenko (1995) as  

      
1

1
log log

,..., 1c

n n c
Prior_MDL(node)=

n n c
+ −   

+   −  
                         (19) 

where ni is the number of instances from the i-th class and c is the number of class values. 

The first term represents the encoding length of class of n instances, i.e. the encoding length 

of training data and the second term represents the encoding length of the class frequency. 

For example, if every class label occurs at least once, the possible combinations will be 
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and so forth. Finally we have the total possible class occurrence counts as 









−

−+
=
















⋅








−−

−
∑

−

= 1
1

1
11

0 c
cn

r
c

rc
nc

r
 as shown in equation (19). So the second term can be 

viewed as the model cost of the model class involved (Mehta et al. 1996). There are some 

other formulas for the MDL code length as described by Krichevsky and Trofimov (1983) 

and Mehta et al. (1996). When compared to other algorithms such as pessimistic pruning that 

do not use separate dataset for pruning, the MDL-based pruning algorithm tends to produce 

trees that are significantly smaller in size.  

In next section, we will compare the results from instance selection without pruning on 

obtaining small decision trees with the results from two widely-used pruning techniques 

including reduced error pruning and C4.5 pessimistic pruning. For the MDL pruning, we will 

report some results from Mehta’s paper (Mehta et al. 1996).   

4.2 Instance Selection for Pruning Decision Trees 

Table 15 lists some main results for different decision tree pruning techniques with different 

number of minimum instances on leaf nodes (the complete results are listed in Appendix B, 

Table A13). With larger number of minimum instances on leaf nodes, the decision tree is 

forced to stop growing earlier so the tree size is smaller; but the accompanying problem is 

that the tree may not be developed well to fit the training data so it is less accurate. 

Considering the MDL pruning presented by Mehta et al. (1996) with the minimum number of 

leaf instances is 5, for the “Letter” dataset, the tree size after MDL pruning is 1174.8 and the 
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accuracy is 84.2%; for the “Segment” dataset, the tree size is 56.2 and the accuracy is 94.5%. 

As a comparison, for the “Letter” dataset, using reduced error pruning with subtree raising, 

the tree size is 965 and the accuracy is 82.8%; using C4.5 pessimistic pruning with subtree 

raising, the tree size is 1499 and the accuracy is 85.9%; using instance selection without 

pruning, the tree size is 857 and the accuracy is 81.6%. This example indicates that even for 

the decision tree without any pruning, instance selection still works well in obtaining good 

accuracy and small tree size compared to other pruning techniques. Therefore, instance 

selection can be used as a good alternative for tree pruning. 

Table 15 Major results for different pruning techniques 

Minimum leaf  

instance setting 

 without pruning 

Instance selection 

without pruning 

 (Top 50%/75%)* 

Reduced error pruning 

with subtree raising 

C4.5 pruning with 

subtree raising 
Dataset 

Number of  

minimum 

leaf instances  Tree 

size 
Accuracy 

Tree 

size 
Accuracy 

Tree 

size 
Accuracy 

Tree 

size 
Accuracy 

5 1637 85.9 857.0 81.6 965 82.8 1499 85.9 

10 987 83.2 509.0 76.7 647 80.1 931 83.2 Letter 

15 755 81.3 348.6 73.0 409 75.7 589 79.2 

5 61 99.4 33.0 98.6 43 99.1 55 99.4 

10 47 99.1 24.2 98.1 37 98.7 41 99.1 Scheduling 

15 43 98.9 18.2 97.6 29 97.9 35 98.6 

5 332 92.7 172.0 90.5 154 92.7 171 94.4 

10 213 91.2 116.2 87.9 142 90.9 134 92.5 Splice 

15 156 90.3 66.4 85.3 74 86.5 108 89.9 

5 75 96.0 36.2 94.6 43 95.0 59 96.0 

10 47 95.1 25.0 92.4 39 94.9 47 95.0 Segment 

15 39 95.0 20.6 90.4 31 92.8 33 94.3 

5 50 98.9 15.6 98.1 39 98.3 34 98.8 

10 37 98.5 10.0 97.9 17 98.0 28 98.6 Sick 

15 24 98.3 8.6 97.5 7 97.9 14 98.1 

*: Scheduling, segment and sick: use top 50% selected instances; Letter and splice: use top 75% selected instances to obtain 

close accuracies 
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4.3 Case Study: Instance Selection for Sick Dataset 

Exploring the selected instances will provide more insights for our instance selection 

approach. There are several ways in which instance selection could be helpful: eliminate 

outliers, eliminate missing values, and select the most useful instances for separating classes. 

However, there is also a concern that instance selection may eliminate or vastly reduce 

minority classes in unbalanced datasets. All these issues are explored in this section for 

“Sick” dataset. We choose this dataset because it is the only one with the required 

characteristics: missing values, outliers, and unbalanced class. First of all, Figure 13 and 14 

show the decision trees before and after instance selection, respectively.  

 
Figure 13 Decision tree before instance selection on sick dataset 
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Figure 14 Decision tree after instance selection on sick dataset 

Before instance selection, the decision tree has 61 nodes, 34 leaves and uses 12 distinct 

attributes for splits (“T3”, “T3 measured”, “TT4”, “TSH”, “FTI”, “T4U”, “referral source”, 

“sick”, “age”, “query hypothyroid”, “on thyroxine” and “T4U measured”). After instance 

selection, the decision tree contains only 7 nodes, 4 leaves and 3 split attributes (“T3”, “T3 

measured” and “TT4”). More importantly, the tree is much more interpretable. From medical 

knowledge (Fu, 2007), the values of “T3” and “TT4” are two most important measures to 

reflect the patient’s thyroid situation. The normal “T3” value is 1.23~3.39 nmo1/L, if the 

value of “T3” is less than 1.23 and the value of “TT4” is over 30 times than “T3” value, it is 

highly possible that the patient has thyroid disease. The decision tree in Figure 14 shows that 
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if “T3” value is less than 1.1 and “TT4” value is higher than 53, the patient has thyroid 

disease, which is quite consistent with the medical knowledge. 

Moreover, 2-dimensional projection tour plots from GGobi (Swayne et al. 2003) are used 

to display the distribution of the class attribute before and after instance selection. 

Mathematically, a 2-dimensional projection of data is computed by multiplying an pn × data 

matrix X by an orthonormal 2×p  projection matrix A. These tour plots are useful in 

revealing interesting data structures, such as clusters of points and outliers. For data mining 

models, tour plots can help to understand how the models work in a particular problem (Cook 

et al., 1995). For a 2-dimensional tour plot, the x-axis corresponds to the values of data 

matrix X projected to one dimension and the y-axis corresponds to the values of data matrix 

X projected to the other dimension. For example, suppose the data matrix X and projection 

A1 were these (Cook et al., 1995): 
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of the data matrix X. These projections are illustrated in Figure 15, which shows the data 

projections, XA1 and XA2, respectively. More examples of these 2-dimensional tour plots 

can be found in Appendix G (Figure A13, A15, A17 and A19).  

 
Figure 15 Two 2-dimensional data projections 

   Figure 16 and 17 show the tour plots on “Sick” dataset before and after instance selection. 

The green cross points represent the “negative” class while the blue circle points represent 

the “sick” class. Figure 16 (a) and Figure 17 use the three attributes in the decision tree after 

instance selection, that is, “T3”, “T3 measured” and “TT4”, while Figure 16 (b) uses the 
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twelve attributes in the decision tree before instance selection including “T3”, “T3 measured”, 

“TT4”, “TSH”, “FTI”, “T4U”, “referral source”, “sick”, “age”, “query hypothyroid”, “on 

thyroxine” and “T4U measured”.  

 
Figure 16 Data visualization before instance selection  
 (a) using three attributes; (b) using twelve attributes 

As is known, a decision tree can be viewed as a partitioning of the instance space and the 

instance space can only be partitioned in boxes parallel to axes of the space. Each partition, 

represented by a leaf, contains the instances that are similar in relevant respects and thus are 

expected to belong to the same class. So if the instances from the same class are close to each 

other and well separated from the instances from other classes, the decision tree can find the 

partition quickly hence the size of the tree is better controlled. From Figure 16, it can be seen 

that before instance selection there is a lot of overlapping on the distribution for the classes 

no matter we use three or twelve attributes, so while it is quite possible to grow a tree that fits 

 
               (a)                                             (b) 
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the training set well it may become too elaborate. On the other hand, the distribution of the 

classes is much more separated after instance selection as shown in Figure 17, thus it is easier 

for the decision tree to find a good partition of the whole space and helps to cut down the 

tree’s size. 

 
Figure 17 Data visualization after instance selection  

As a comparison, Figure 18 shows the scatter plot matrix on selected instances. It can be 

seen that even though Figure 18 does show some relationship between those three important 

attributes with the classification, it is still difficult to determine the exact separation of the 

two classes from the pairwise plots without the combination of the three attributes. However, 

by using a tour plot, the separation of the two classes can be drawn using all three attributes 

as shown in Figure 17. The upper left corner is separated as “sick” class and the other space 
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is separated as “negative” class. It can be seen that there are three instances (plotted as cross) 

incorrectly classified as “sick” which are very close to the border and there are four instances 

(plotted as circle) incorrectly classified as “negative”. These seven points are the errors from 

decision tree. So the tour plot clearly displays the tree solution to this classification problem. 

 
Figure 18 Scatter plot matrix of three important attributes  
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Furthermore, from Figure 16, it can be easily identified one error in the original data. 

This error has the value of 455 in “age” attribute which is impossible for a patient. However, 

after instance selection, this instance is excluded from the selected subset as shown in Figure 

19, which indicates that instance selection may get rid of some errors in the original data. 

 
Figure 19 Bar charts on age attribute before (left) and after (right) instance selection 

There are some further interesting insights that can be read from Figure 16 and 17. Both 

of these figures have some data points arranged in straight line because these instances have 

missing values in attribute “T3” and identical values in attribute “T3 measured”. The 

presence of missing values in a dataset can affect the performance of a classifier constructed 

using that dataset as a training data. Rates of less than 1% missing data are generally 

considered trivial, 1~5% manageable. However, 5~15% require sophisticated methods to 

handle, and more than 15% may severely impact any kind of interpretation (Little and Rubin, 

2002). Before instance selection, the number of these missing values is 769 (the rate of the 
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number of missing values over the total number of instances is 20.4%) while after instance 

selection, the number of these missing values is down to 31 (the rate drops to 12.4%). 

Instance selection thus helps to reduce the number of missing values, which is certainly 

beneficial for the decision tree even though C4.5 decision tree is able to deal with missing 

values. 

Besides missing values, the sick dataset also contains some possible outliers. For example, 

considering attribute “TT4”, there appear to be some data points on the far top in the bar 

charts as shown in Figure 20. For quantifiable methods, modified z-score method (Barnett, 

1985) and box plot rule can be used to identify the possible outliers.  

 
Figure 20 Bar charts on TT4 attribute before (left) and after (right) instance selection 

Z-score method is based on robust regression methods (Rousseeuw, 1987). In the 

original z-score test, the mean x  and standard deviation s of the dataset are used to obtain a 
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z-score 
s

xxz i
i

−
=  for each observation. Donzenis and Rakow (1987) suggested that 

absolute z-score higher than 2.70 should be considered “outside” and higher than 4.72 should 

be considered “far out”. However, this method is not reliable because both the mean and 

standard deviation are influenced by the outliers. To address this problem, the modified 

z-score method uses the median of absolute deviation about the sample median (MAD) to 

replace the standard deviation s in z-score calculations. The MAD is defined as 

{ }mi xxmedianMAD −= , where xm is the median of entire data. Table 16 lists the results 

from modified z-score method for attribute “TT4” before and after instance selection.  

Table 16 Modified z-score method for identifying outliers  

Attribute TT4 Before instance selection After instance selection 

Sample mean  x  108.3 111.3 

Sample median xm 103 109.5 
MAD value 18 22 

Sample size (without missing values) 3541 240 
Number of missing values 231 (6.1%) 11 (4.4%) 

Number of outside outliers (z-score> 2.70) 435 (12.3%) 20 (8.3%) 
Number of far-out outliers (z-score> 4.72) 123 (3.5%) 3 (1.2%) 

It can be seen from Table 16 that before instance selection, there are 435 potential 

outliers in “TT4” which takes up 12.3% of the entire data including 123 “far out” outliers 

which takes up 3.5% of the entire data. However, in the selected instances, there are only 20 

possible outliers in “TT4” with 3 “far out” outliers, and the rates for “outside” and “far out” 

outliers drop from 12.3% to 8.3% and 3.5% to 1.2% respectively. Again Table 16 shows that 
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instance selection greatly reduces the missing values. 220 missing values in original data are 

excluded from the selected instances. 

Modified z-score method is mainly applied to normally distributed data. But the results 

from Kolmogorov-Smirnov normality test (Kolmogorov, 1933) indicate that the normal 

distributional assumption may not be satisfied, so the modified z-score method may mislabel 

or miss some outliers. Box plot rule, on the other hand, does not require the normal 

distributional assumption. Box plot has become the standard technique for presenting the 

5-number summary which consists of the minimum and maximum range values, the 25th 

percentile (Q1), the 75th percentile (Q3) and the median. The rule states that an observation is 

labeled as a “mild” outlier if its value is less than )](5.1[ 131 QQQ −×− or larger than 

)](5.1[ 133 QQQ −×+ ; it is an “extreme” outlier if its value is less than )](3[ 131 QQQ −×− or 

larger than )](3[ 133 QQQ −×+  (Tukey, 1977). Table 17 lists the results from box plot rule. 

Table 17 Box plot rule for identifying outliers  

Attribute TT4 Before instance selection After instance selection 

25th Percentile (Q1) 87 85.5 
Median 103 109.5 

75th percentile (Q3) 124 127 
Sample size (without missing values) 3541 240 

Number of mild outliers  495 (13.9%) 32 (13.3%) 
Number of extreme outliers  71 (3.5%) 3 (1.3%) 

Comparing the results from modified z-score method in Table 16 and box plot rule in 

Table 17, it can be seen that box plot rule identifies more mild outliers than modified z-score 

method but equal or less extreme outliers. Box plot rule finds 495 mild outliers in original 

data and 71 of them are extreme outliers; after instance selection, the number of mild outliers 



www.manaraa.com

78 

is down to 32 and 3 of them are extreme outliers. It is interesting that the extreme or far out 

outliers from modified z-score method and box plot rule turn out to be the same. These three 

outliers are also highlighted in Figure 17. Nevertheless, the results from Table 16 and 17 

consistently reveal another benefit from instance selection, that is, it may help to reduce the 

possible outliers in the data, especially the “far out” or extreme outliers, which is beneficial 

to the development of better data mining models since in the presence of outliers, any 

statistical analysis based on sample means and variances can be distorted.   

Last but not least, Figure 16 and 17 show that the two class values are not balanced in the 

original dataset as well as the selected instance subset, so there is a concern that instance 

selection would eliminate a minority class and the overall accuracy of the decision tree may 

be misleading. In particular, the original sick dataset has 3541 “negative” values but only 231 

“sick” values (the ratio between the number of the minority class and majority class is 6.5%); 

while in the selected instance subset, there are 228 “negative” values but only 23 “sick” 

values (the ratio is 10.1%). When a dataset is unbalanced (the number of instances in 

different classes varies greatly), the error rate of a classifier may not be representative of the 

true performance of the classifier. A confusion matrix (Kohavi and Provost, 1998) is helpful 

under this situation. This matrix contains information about actual and predicted 

classifications done by a classification model. For example, considering a binary 

classification problem (positive or negative), the confusion matrix will have four categories 

as shown in Figure 21 (a): True positives (TP) are instances correctly classified as positives; 
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False positives (FP) are negative instances incorrectly classified as positive; True negatives 

(TN) correspond to correctly classified negatives; finally, false negatives (FN) refer to 

positive instances incorrectly classified as negative. Figure 21 (b) gives some definitions of 

different evaluation measures from the confusion matrix (Davis and Goadrich, 2006). The 

True Positive Rate measures the fraction of positive instances that are correctly classified. 

The False Positive Rate measures the fraction of negative instances that are misclassified as 

positive. Recall is the same as True Positive rate, whereas Precision measures the fraction of 

instances classified as positive that are truly positive. 

 
Figure 21 Confusion matrix (a) and related evaluation measures (b) 

Our concern here is that instance selection would vastly reduce the minority class then 

the decision tree from the selected instances may have high overall accuracy but poor recall 

on the minority class since the majority class dominates the classification results. We want 

the decision tree to have good performance both on the majority and minority class, so the 

value of recall or true positive rate on the minority class is of special interest. 
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Table 18 Performance of the decision tree before/after instance selection 
After instance selection Before instance selection 

(10-fold cross validation) 10-fold cross validation Independent test set Confusion matrix 

Negative Sick Negative Sick Negative Sick 
Classified as negative 3523 27 225 4 1173 6 

Classified as sick 18 204 3 19 12 67 
True positive rate 99.5% 88.3% 98.7% 82.6% 99.0% 91.8% 
False positive rate 11.7% 0.5% 17.4% 1.3% 8.2% 1.0% 

Precision 99.2% 91.9% 98.3% 86.4% 99.5% 84.8% 
Recall 99.5% 88.3% 98.7% 82.6% 99.0% 91.8% 

Kappa statistic 0.89 0.83 0.87 
Overall accuracy 98.8% 97.2% 98.6% 

Table 18 includes the confusion matrix and different performance measures for the 

decision trees. Using 10-fold cross-validation, the decision tree built on the entire data has 

the recall of 99.5% for the “negative” class and 88.3% for the “sick” class. After instance 

selection, the decision tree from the selected subset has the recall of 98.7% for the “negative” 

class and 82.6% for the “sick” class. As expected, the decision trees have higher accuracies 

on the majority class, but the accuracies on the minority class are still acceptable with more 

than 80%. More importantly, as in all of the above experiments, the decision tree from the 

selected subset is applied to another independent test data (1185 “negative” instances and 73 

“sick” instances) to obtained an unbiased estimate of the accuracy. The tree obtains the 

overall accuracy of 98.6%, the recall of 99.0% on “negative” class and the recall of 91.8% on 

“sick” class. Instance selection therefore actually increases the recall for the minority class on 

the test data. Also the decision trees before and after instance selection both have high Kappa 

statistic values (over 0.8), which represents the correlation between the classification and the 

actual data. The value of Kappa statistic ranges from 0 to 1. A perfect classification will have 
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a Kappa value of 1. Typically, values greater than 0.8 represent strong agreement between 

classification and the actual data while values between 0.4 and 0.8 represent moderate 

agreement. Anything below 0.4 is indicative of poor agreement (Congalton and Green, 1999). 

So the high Kappa statistic values in Table 18 indicate that the classification predicted by 

decision trees has good agreement with the actual data and the unbalanced structure of this 

dataset does not have great impact on the performance of the decision tree. 

Similar analysis is applied to the other two datasets (“Scheduling” and “Splice” data) 

that also have unbalanced class values and the results are listed in Appendix H (Table A20 

and A21). It can be seen that after instance selection, the recalls of the “Splice” data are quite 

good for those two minority classes (“EI” and “IE”) with over 85% while the recall of the 

“Scheduling” data is unacceptable for the minority class (“no”) with only 41.7%. So for 

“Scheduling” data, the unbalanced classes do affect the performance of the decision tree from 

the selected instances. One possible way to address this concern is to incorporate the recall 

for the minority class into the objective function, for example, the objective function might 

be modified as follows: 

( ) 





−−






−=

K
SsizeaSeSf ))((logclassminority for recalllog))((log)(

^ ψ
ψ , 1>a .    (20) 

With the modified objective function, the optimization is forced to search the instances from 

which the relatively high recall on the minority class can be obtained. Appendix H (Table 

A20) also includes the results from the modified objective function for comparison. It can be 
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seen that six more instances are selected from the minority class resulting in higher recall 

value. Even the overall accuracy is reduced slightly from 97.1% to 95.9%, the recall on “no” 

class is greatly increased from 41.7% to 83.3%. Thus, the modified objective function acts 

quite well in improving the decision tree’s performance on minority class. It is also 

interesting that the accuracies on different classes have similar patterns before and after 

instance selection. For example, the decision tree from original “Sick” dataset has higher 

accuracy on “negative” class than “sick” class, then after instance selection, the decision tree 

from the instance subset still has higher accuracy on “negative” class. Similar conclusions 

can also be reached for “Scheduling” and “Splice” datasets from Appendix H (Table A20 and 

A21), which implies that instance selection tends to keep the instances doing well in 

classification. 

As a brief summary for this section, the benefits from instance selection may include: 

l Reduce the size of decision tree and the amount of data needed for inducing good 

decision tree. 

l Reduce some missing values from the original data. 

l Reduce some possible outliers, especially the extreme outliers, from the original data. 

l Keep the instances that help to obtain good classification accuracy.  
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CHAPTER 5.  CONCLUSIONS 

Facing the mounting challenges of enormous amounts of data, much of the current research 

concerns itself with scaling up data mining algorithms. Instance selection, which is dealing 

with scaling down the data, provides an alternative to the algorithm scaling-up and has drawn 

more and more attention recently. As data mining is applied to larger datasets, effective 

instance selection can be expected to grow in importance. In this dissertation we present an 

optimization-based approach to instance selection for improving decision tree. We provide in 

the following sections a summary of main results, general conclusions and some directions 

for future research. 

5.1 Summary of Results 

The objective of instance selection is to select an instance subset that results in smaller and 

more easily interpretable decision trees without losing predictive accuracy. To obtain 

heuristic solutions to this problem we used a genetic algorithm (GA) implementation. Section 

2.2 describes the details of the genetic algorithm. The genetic algorithm incorporates decision 

tree’s accuracy and size into its objective (fitness) function, thus during the search process, 

the algorithm tries to find the instance subset from which the small and high quality decision 

tree can be developed. The decision tree from the entire dataset and the selected instances are 

both evaluated using an independent test data. Through the computational experiments on 



www.manaraa.com

84 

five different datasets from UCI Machine Learning Repository, we have shown in Section 

2.3.2 that for C4.5 decision trees, the size of the tree can be significantly reduced using 

instance selection, while the predictive accuracy is good. One concern for this approach is 

that it may be time consuming for large datasets since lots of decision trees have to be built 

and evaluated during the GA process. So in Section 2.3.3, GA-based instance selection is 

applied to a large dataset with over 50,000 instances and the computation time grows only at 

linear rate, which indicates that our approach is able to find good instance subsets with 

acceptable computation cost. Then a natural question for GA-based instance selection is 

when this approach is the most likely to work well. A study of data entropy in Section 2.3.4 

leads to the conclusion that GA-based instance selection works best for the dataset with 

relatively low data entropy. For example, the dataset with only two class values has much 

lower entropy than the dataset with multiple class values, then for two-class problem, we 

usually only need a small fraction of the instances to build a good decision tree, while for 

multi-class problem, much more instances are needed hence there is less benefit from 

instance selection. 

In addition to showing the effectiveness of GA-based instance selection, Chapter 3 

compares the results from genetic algorithm and other heuristic methods including Rmhc 

greedy heuristic and simple construction heuristic. The point-based Rmhc method has the 

best solution due to its widest search space, but it is very heavyweight in computational 

resources. On the other hand, the subset-based Rmhc and simple construction heuristic have 
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the same search space as GA and they both run very fast, but they are not as good as GA in 

terms of solution quality. Considering the speed of the algorithm and the quality of the 

solution, GA is obviously the winner with good efficiency and effectiveness.  

The dissertation further investigates other decision tree pruning techniques that also try to 

reduce the tree’s size and improve its interpretability. Chapter 4 reviews some frequently 

used pruning techniques, including reduced error pruning, C4.5 pessimistic pruning and 

Minimum Description Length (MDL) pruning. The comparison between instance selection 

and these pruning techniques demonstrates that even without pruning, the decision tree from 

selected instances has small size and comparable accuracy, so instance selection can be used 

as a good alternative for decision tree pruning. Also the case study reported in Section 4.3 

reveals some insights from instance selection. More specifically, the study shows that 

instance selection effectively reduces the missing values and potential outliers from the 

original data while at the same time keeps the instances beneficial for classification. Another 

concern for instance selection is that it may eliminate or greatly reduce the minority class for 

the dataset with unbalanced classes. With the analysis of confusion matrices on three 

different datasets, it is found that one dataset did have this problem, that is, the decision tree 

from the selected instances has low recall on the minority class even though the overall 

accuracy is high. A possible modification of the objective function, that is, adding the recall 

on minority class, is proposed to address this problem and it does perform well in improving 

the decision tree’s performance on the minority class. 
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5.2 Hypotheses Revisited and General Conclusions 

Our work illustrates the usefulness of using instance selection as pre-processing before 

decision tree induction, and the effectiveness of using genetic algorithm for obtaining 

heuristic solutions to this problem. Some major conclusions are summarized below. Also the 

three hypotheses proposed in Section 1.2 are quoted below for ease of reference. 

  The first hypothesis addresses the effectiveness of genetic algorithm for instance selection: 

Hypothesis 1 

GA-based instance selection will produce smaller and more interpretable 

decision trees while maintaining an acceptable level of accuracy.  

The following conclusions are based on the study of GA-based instance selection in 

Chapter 2: 

l GA-based instance selection reduces the size of the decision tree by an order of 

magnitude. 

l Using different aggregation of the instance subsets, GA-based instance selection 

maintains good prediction accuracy. 

In addition to these results, which are related to the effectiveness of GA-based instance 

selection, the discussion in Chapter 3 concludes that compared with other heuristic 
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approaches such as Rmhc greedy heuristic and simple construction heuristic, GA-based 

instance selection performs better in balancing computation cost and solution quality. 

The second hypothesis addresses the benefit of instance selection for preventing 

overfitting in decision tree induction: 

Hypothesis 2 

Optimization-based instance selection prevents overfitting in decision tree 

learning.  

The following conclusions are based on the study of average leaf ratio described in 

Chapter 2: 

l Instance selection is beneficial for decision tree in increasing the average number of 

instances (ALR) associated with leaf nodes, thus helps to avoid the overfitting of 

decision tree. 

l With more instances selected, there is less improvement in ALR hence less benefit from 

instance selection. 

Furthermore, in Chapter 4, we compare instance selection with different decision tree 

pruning techniques. The results show that instance selection can be used as an effective 

alternative for decision tree pruning. And through the case study on “Sick” dataset, we find 

that instance selection helps to reduce the errors, potential outliers and missing values from 

the data while it maintains the instances that perform well in classification. 
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The third hypothesis addresses the effects of different parameters in the performance of 

instance selection: 

Hypothesis 3 

Number of instances, number of class values, and number of attributes will affect the 

performance of instance selection for improving decision tree 

The following conclusions are based on the study described in Chapter 2: 

l Number of class values, or more generally, data entropy has great impact on instance 

selection. Instance selection works best for low entropy problems; with higher entropy 

more instances are needed to account for the diversity in the data to induce good decision 

trees and hence there is less benefit from the instance selection approach. 

l Number of instances and attributes will influence the speed of genetic algorithm. The 

computation time grows only at linear rate with more instances, while it grows faster 

with more attributes for large datasets. 

5.3 Future Work 

It should be noted that even though GA-based instance selection is mainly focused on 

improving C4.5 decision trees in this dissertation, it can be applied to other interesting 

problems. For example, Li and Olafsson (2005) used instance selection to identify good 

scheduling practices and the fitness function was modified to include the scheduling 
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performance measure such as maximum lateness. The results showed that instance selection 

greatly reduced the maximum lateness and provided more scheduling insights. Moreover, 

instance selection has been successfully applied to identity disclosure protection (Zhu and 

Wu, 2006). Identity disclosure is one of the most serious privacy concerns nowadays. 

Instance selection was used to reconstruct the original data so that the most important 

instances for classification can be protected. 

Future research will take into account more complicated situations, and better 

characterize dataset where this approach is the most likely to work well. In particular, we will 

consider how different structures of data such as unbalanced classes, high entropies and 

existence of outliers influence the performance of the algorithm. And it will be interesting to 

further explore the selected instances since it may reveal some insights of instance selection. 

Another important issue in instance selection is how to choose the appropriate number of 

subsets. Currently the number of subsets is determined by empirical study, but it will be 

beneficial to develop some heuristic for this. We will also consider other choice for defining 

a fitness function that balances the size reduction objective with maintaining high predictive 

accuracy. Finally, for better data reduction, it is natural to investigate if this work can be 

combined with other research in solving the problem of huge amounts of data, such as 

algorithm scaling-up, attribute selection and attribute construction. It is still a big challenge 

to integrate these different techniques in achieving the goal for effective and efficient data 

mining.  
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APPENDIX A  DIFFERENT PARAMETERS FOR GA-BASED 

INSTANCE SELECTION 

 

TABLE A1-A12 (PAGE 91-102) 
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Table A1 Results of best subset when fitness weight a and selection constant Q are varied 
 

α=2.0 α=4.0 α=6.0 
Q=1.5 Q=2.0 Q=2.5 Q=1.5 Q=2.0 Q=2.5 Q=1.5 Q=2.0 Q=2.5 Dataset  

Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 
Scheduling Accuracy 95.97 0.94 96.12 0.74 96.26 0.39 95.27 0.44 95.16 0.85 95.28 0.82 95.78 0.60 94.99 0.84 95.86 0.51 
Best subset Tree size 10.20 2.40 10.20 2.71 11.40 1.50 7.80 2.04 9.80 2.04 8.60 2.33 7.80 2.04 9.00 1.26 10.60 0.80 

 ALR 19.43 3.20 19.90 4.51 17.25 2.26 25.35 6.07 20.16 3.88 23.37 6.49 25.24 6.01 21.44 2.97 18.22 1.42 
Splice Accuracy 71.65 10.15 73.65 10.59 68.27 13.24 69.32 8.69 73.72 12.36 68.69 10.38 68.92 9.71 76.41 2.63 76.25 4.95 

Best subset Tree size 25.80 13.06 27.40 15.44 19.80 15.53 23.60 12.27 27.80 13.63 22.60 13.04 26.40 12.95 39.00 3.87 32.00 4.24 
 ALR 23.80 39.31 24.32 40.59 44.65 49.66 24.31 39.31 24.33 41.10 25.60 41.04 24.17 40.39 3.38 0.31 4.19 0.59 

Segment Accuracy 88.12 3.08 90.63 1.11 89.52 0.79 82.44 5.19 87.19 3.28 85.92 3.47 84.42 4.63 80.64 3.60 84.89 3.51 
Best subset Tree size 17.40 2.33 17.80 1.19 18.60 1.57 14.60 1.60 17.00 1.39 16.60 2.03 15.80 1.17 15.40 1.57 16.20 2.12 

 ALR 11.50 1.53 11.10 0.68 10.79 0.87 13.65 1.31 11.64 0.86 12.24 1.47 12.60 0.92 12.90 1.06 12.49 1.48 
Letter Accuracy 58.89 2.64 58.67 3.05 60.63 1.81 57.69 4.64 60.24 3.03 57.53 4.00 57.28 3.41 57.36 3.26 60.58 2.41 

Best subset Tree size 257.0 23.43 262.6 11.19 269.4 17.43 264.6 27.35 279.4 21.38 262.6 19.27 259.0 12.48 264.6 23.90 285.0 20.98 
 ALR 0.82 0.07 0.80 0.04 0.78 0.06 0.80 0.09 0.75 0.05 0.81 0.06 0.81 0.04 0.80 0.07 0.74 0.05 

Sick Accuracy 95.26 1.40 96.01 1.68 94.19 1.22 96.11 1.84 96.43. 1.18 95.56 1.32 97.30 1.01 96.62 1.34 96.41 1.37 
Best subset Tree size 3.00 2.53 4.40 3.02 2.60 2.11 5.80 1.18 5.80 1.09 5.00 0.47 6.20 1.03 5.60 2.54 6.40 1.40 

 ALR 75.70 36.92 58.80 40.19 77.80 34.83 32.14 4.63 31.28 4.15 34.86 0.09 29.67 3.95 42.45 32.87 28.14 6.70 
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Table A2 Results of top 25% subsets when fitness weight a and selection constant Q are varied 
 

α=2.0 α=4.0 α=6.0 
Q=1.5 Q=2.0 Q=2.5 Q=1.5 Q=2.0 Q=2.5 Q=1.5 Q=2.0 Q=2.5 Dataset  

Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 
Scheduling Accuracy 97.25 0.50 97.56 0.34 97.58 0.31 97.52 0.62 97.47 0.40 97.73 0.39 97.47 0.37 97.89 0.82 97.47 0.68 
Top 25% Tree size 23.80 2.99 29.80 2.71 27.00 3.79 23.80 4.66 27.40 6.37 28.60 3.67 26.20 0.98 27.00 4.56 22.20 3.92 

 ALR 8.19 1.05 6.55 0.62 7.27 0.96 8.37 1.66 7.36 1.42 6.86 0.82 7.36 0.27 7.37 1.42 8.93 1.84 
Splice Accuracy 85.66 1.19 85.96 1.48 85.08 1.33 85.56 1.55 85.13 1.41 86.18 2.39 86.22 1.71 86.05 1.03 83.63 2.39 

Top 25% Tree size 81.00 9.40 77.40 11.65 70.00 6.16 82.40 10.97 72.40 5.87 76.20 8.59 87.40 16.70 79.40 5.86 81.00 10.58 
 ALR 1.56 0.17 1.65 0.27 1.79 0.16 1.54 0.20 1.72 0.15 1.65 0.18 1.48 0.32 1.57 0.13 1.56 0.19 

Segment Accuracy 91.73 1.30 91.59 1.23 91.70 0.71 91.94 1.84 90.66 1.00 92.08 1.57 90.76 0.85 91.66 0.57 91.14 0.51 
Top 25% Tree size 29.80 3.71 29.00 3.89 30.20 2.22 29.00 4.06 29.40 2.80 31.00 3.66 33.80 6.82 31.40 3.63 30.60 3.31 

 ALR 6.59 0.79 6.78 0.91 6.44 0.43 6.79 0.93 6.63 0.61 6.32 0.67 5.96 1.09 6.24 0.64 6.39 0.65 
Letter Accuracy 72.70 0.72 73.57 1.16 72.25 1.14 72.59 0.68 73.53 0.94 73.51 0.60 72.25 0.99 72.46 1.32 72.80 0.63 

Top 25% Tree size 629.0 23.82 635.0 19.01 638.6 17.01 619.4 32.06 620.6 19.57 619.0 7.94 637.8 28.3 637.4 12.45 609.0 17.18 
 ALR 0.32 0.01 0.31 0.01 0.31 0.01 0.32 0.02 0.32 0.01 0.32 0.00 0.31 0.01 0.31 0.01 0.33 0.01 

Sick Accuracy 97.44 0.31 98.14 0.36 98.20 0.37 98.09 0.34 97.54 0.40 98.06 0.32 98.12 0.50 97.69 0.50 97.63 0.41 
Top 25% Tree size 13.20 4.12 13.80 2.72 10.20 3.51 8.80 2.02 11.40 4.08 10.80 3.37 12.40 3.81 11.40 4.75 10.00 2.23 

 ALR 12.33 2.95 12.44 3.81 18.50 6.24 20.50 4.58 17.04 5.99 17.86 5.19 14.75 5.49 17.82 7.00 18.05 4.06 
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Table A3 Results of top 50% subsets when fitness weight a and selection constant Q are varied 
 

α=2.0 α=4.0 α=6.0 
Q=1.5 Q=2.0 Q=2.5 Q=1.5 Q=2.0 Q=2.5 Q=1.5 Q=2.0 Q=2.5 Dataset  

Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 
Scheduling Accuracy 98.41 0.26 98.38 0.12 98.43 0.39 98.83 0.20 98.73 0.14 98.39 0.19 98.34 0.22 98.55 0.24 98.56 0.17 
Top 50% Tree size 44.20 3.25 37.80 4.12 39.00 6.32 37.80 3.49 40.20 2.04 42.60 6.62 43.00 3.35 40.20 2.04 40.60 2.33 

 ALR 4.45 0.33 5.21 0.52 5.12 0.78 5.20 0.47 4.87 0.24 4.70 0.73 4.57 0.36 4.87 0.24 4.82 0.28 
Splice Accuracy 90.32 0.70 91.24 0.73 90.15 0.93 91.69 1.30 90.73 0.84 90.58 1.03 91.37 0.64 89.87 2.10 90.11 0.91 

Top 50% Tree size 136.0 8.49 124.8 8.04 128.4 6.83 135.6 13.89 136.4 5.98 117.2 20.48 130.4 4.68 124.0 12.06 138.2 11.86 
 ALR 0.92 0.06 1.00 0.06 0.97 0.05 0.93 0.10 0.91 0.04 1.09 0.19 0.96 0.03 1.01 0.10 0.91 0.07 

Segment Accuracy 93.39 0.25 94.26 0.92 94.50 0.70 94.29 0.73 93.77 1.11 93.56 1.17 93.49 0.68 94.29 0.96 93.84 0.79 
Top 50% Tree size 42.20 5.15 46.60 3.59 53.40 5.33 45.40 3.64 45.00 3.45 47.00 5.13 46.60 3.11 46.20 3.58 45.00 6.86 

 ALR 4.70 0.59 4.22 0.29 3.71 0.37 4.33 0.31 4.37 0.30 4.21 0.44 4.22 0.26 4.26 0.32 4.45 0.68 
Letter Accuracy 79.63 0.58 79.87 0.55 79.37 0.46 79.43 0.53 80.07 0.73 80.08 0.52 79.44 1.04 79.30 0.50 80.18 0.54 

Top 50% Tree size 1031 14.31 1059 24.76 1058 26.85 1050 26.74 1054 17.66 1065 14.92 1077 40.16 1081 25.99 1048 15.17 
 ALR 0.19 0.00 0.19 0.00 0.19 0.00 0.19 0.00 0.19 0.00 0.19 0.00 0.19 0.01 0.18 0.00 0.19 0.00 

Sick Accuracy 97.98 0.23 98.43 0.27 98.33 0.33 98.19 0.34 97.63 0.42 98.11 0.32 98.22 0.51 97.95 0.40 97.76 0.38 
Top 50% Tree size 16.80 5.00 20.20 2.72 15.80 4.37 15.60 3.84 17.00 4.56 12.60 5.69 14.00 5.43 14.40 4.70 15.60 2.45 

 ALR 10.25 2.67 8.67 1.38 11.58 4.36 11.98 4.25 11.02 4.55 16.54 6.58 14.19 6.23 13.48 5.35 11.35 2.42 
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Table A4 Results of top 75% subsets when fitness weight a and selection constant Q are varied 
 

α=2.0 α=4.0 α=6.0 
Q=1.5 Q=2.0 Q=2.5 Q=1.5 Q=2.0 Q=2.5 Q=1.5 Q=2.0 Q=2.5 Dataset  

Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 
Scheduling Accuracy 98.61 0.20 98.72 0.24 98.68 0.33 98.92 0.15 98.82 0.16 98.50 0.24 98.75 0.20 98.87 0.22 98.73 0.20 
Top 75% Tree size 48.60 4.08 45.40 3.20 48.60 5.43 48.20 6.14 47.80 3.71 49.80 2.99 47.40 5.28 44.60 3.20 45.80 8.45 

 ALR 4.06 0.37 4.33 0.30 4.08 0.42 4.12 0.47 4.12 0.29 3.95 0.22 4.18 0.42 4.41 0.31 4.42 0.83 
Splice Accuracy 91.15 0.83 92.20 0.42 91.07 0.90 92.89 0.59 91.07 0.77 91.62 0.66 92.39 0.47 91.47 0.64 91.02 0.83 

Top 75% Tree size 141.8 3.76 149.2 15.94 131.0 7.51 148.8 9.01 147.2 11.06 130.4 14.13 147.0 6.48 140.8 9.31 148.8 7.02 
 ALR 0.88 0.02 0.84 0.08 0.95 0.05 0.84 0.05 0.85 0.06 0.96 0.10 0.85 0.03 0.89 0.05 0.84 0.04 

Segment Accuracy 93.70 0.85 95.22 0.78 94.50 0.70 95.50 0.76 94.36 0.92 95.12 0.57 93.60 1.23 94.98 0.55 95.05 0.99 
Top 75% Tree size 48.20 1.60 52.60 2.71 53.40 5.33 55.80 2.29 53.40 8.07 51.00 4.90 49.40 4.00 54.20 5.53 52.60 3.60 

 ALR 4.07 0.13 3.74 0.18 3.71 0.37 3.53 0.13 3.76 0.59 3.88 0.38 3.99 0.32 3.66 0.39 3.75 0.25 
Letter Accuracy 81.42 0.68 81.78 0.72 81.49 0.45 81.14 0.57 81.88 0.73 81.60 0.64 81.72 0.48 81.61 0.45 82.15 0.53 

Top 75% Tree size 1239 14.61 1244 13.47 1226 11.12 1233 30.48 1265 29.89 1217 17.58 1247 28.50 1251 38.57 1250 22.43 
 ALR 0.16 0.00 0.16 0.00 0.16 0.00 0.16 0.00 0.16 0.00 0.16 0.00 0.16 0.00 0.16 0.00 0.16 0.00 

Sick Accuracy 98.03 0.45 98.27 0.48 98.51 0.34 98.20 0.32 97.55 0.48 98.14 0.33 98.29 0.55 98.11 0.42 98.16 0.38 
Top 75% Tree size 17.40 4.72 24.40 2.83 22.40 2.68 18.80 6.83 20.00 2.14 16.80 4.58 17.20 3.33 21.00 6.31 21.20 3.20 

 ALR 10.15 2.21 7.11 0.70 8.10 1.16 10.72 4.08 8.38 0.63 11.27 3.62 10.64 3.06 8.99 2.90 8.05 0.93 
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Table A5 Results of best subset when crossover rate c and mutation rate m are varied 
 

c=0.6 c=0.7 c=0.8 
m=0.01 m=0.05 m=0.09 m=0.01 m=0.05 m=0.09 m=0.01 m=0.05 m=0.09 Dataset  

Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 
Scheduling Accuracy 95.43 0.47 95.83 0.98 95.53 0.71 95.83 0.56 95.66 1.09 96.01 0.77 95.04 0.77 95.21 0.62 95.05 1.13 
Best subset Tree size 9.40 2.65 11.80 1.22 6.20 1.67 7.80 2.52 9.00 2.63 8.20 2.16 8.20 2.14 8.20 2.14 9.80 1.18 

 ALR 22.00 7.17 16.48 1.38 30.51 5.86 25.89 7.47 22.55 6.56 24.22 6.04 24.15 6.14 24.24 6.05 19.54 1.69 
Splice Accuracy 72.77 7.80 72.17 11.15 79.50 3.46 68.83 10.18 72.26 10.56 62.96 13.25 70.81 10.75 69.68 10.42 71.35 9.80 

Best subset Tree size 27.00 11.15 26.80 13.83 33.00 2.68 28.00 13.89 27.20 13.88 13.80 15.82 27.60 13.60 23.20 12.09 26.60 13.40 
 ALR 7.45 6.74 24.17 40.39 4.01 0.19 24.26 40.87 23.85 39.78 64.75 49.67 24.68 41.74 24.93 40.54 24.09 40.17 

Segment Accuracy 84.61 2.51 84.05 1.42 86.68 4.26 86.26 2.82 85.36 2.98 85.30 2.87 84.18 2.06 84.10 2.29 86.10 2.88 
Best subset Tree size 16.60 0.80 14.20 1.06 17.00 1.35 17.00 2.25 17.00 1.43 17.00 2.26 13.80 1.19 14.60 1.57 15.80 2.12 

 ALR 11.96 0.68 13.95 1.05 11.80 0.85 11.84 1.83 11.86 0.80 11.76 1.12 14.30 0.89 13.80 1.41 12.89 1.69 
Letter Accuracy 62.02 1.41 59.82 2.10 62.50 1.82 58.46 3.22 59.46 2.34 59.35 2.09 54.25 3.04 56.17 1.04 57.16 2.74 

Best subset Tree size 302.2 8.06 288.6 13.53 311.8 25.87 277.8 25.36 278.6 21.97 275.0 14.07 240.2 21.74 253.4 5.95 238.6 13.86 
 ALR 0.70 0.02 0.73 0.03 0.68 0.06 0.76 0.07 0.76 0.06 0.76 0.04 0.88 0.08 0.83 0.02 0.88 0.05 

Sick Accuracy 95.44 1.40 95.64 1.62 96.38 1.43 95.29 2.15 96.22 2.05 94.98 1.45 94.53 0.62 95.60 1.51 95.43 1.30 
Best subset Tree size 5.60 2.80 5.00 2.32 5.40 2.43 4.20 2.16 4.60 1.03 3.20 2.89 2.20 2.52 3.80 2.50 4.20 1.75 

 ALR 43.39 33.18 45.49 30.26 44.19 32.00 51.10 28.91 38.68 6.84 73.01 38.75 89.16 31.72 61.68 35.89 48.87 27.21 
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Table A6 Results of top 25% subsets when crossover rate c and mutation rate m are varied 
 

c=0.6 c=0.7 c=0.8 
m=0.01 m=0.05 m=0.09 m=0.01 m=0.05 m=0.09 m=0.01 m=0.05 m=0.09 Dataset  

Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 
Scheduling Accuracy 97.43 0.78 97.79 0.66 97.25 0.52 98.12 0.46 97.60 0.55 97.29 0.51 97.45 0.45 97.48 0.43 98.08 0.49 
Top 25% Tree size 27.40 5.12 27.00 3.93 25.40 3.32 28.60 3.94 26.20 3.37 23.40 2.47 27.00 4.44 29.00 4.48 26.60 4.55 

 ALR 7.27 1.30 7.28 1.03 7.68 0.90 6.88 0.96 7.46 0.86 8.27 0.77 7.32 1.15 6.81 1.00 7.46 1.36 
Splice Accuracy 84.04 2.11 85.62 1.29 82.14 2.53 85.09 1.21 84.96 2.31 83.44 1.61 85.08 1.36 83.89 1.86 85.15 1.73 

Top 25% Tree size 76.60 6.22 72.00 6.76 78.40 7.69 71.40 16.47 82.60 6.95 58.80 12.77 73.00 10.85 70.40 7.82 76.00 14.50 
 ALR 1.64 0.14 1.74 0.16 1.61 0.18 1.82 0.32 1.52 0.13 2.21 0.41 1.74 0.25 1.79 0.21 1.70 0.35 

Segment Accuracy 92.87 0.95 90.87 1.33 92.87 0.73 91.45 0.87 90.45 1.26 92.98 0.96 92.04 1.57 92.21 0.89 92.53 1.22 
Top 25% Tree size 28.60 3.44 33.40 3.97 33.00 2.00 31.80 2.79 31.80 2.81 27.40 1.67 31.80 2.77 31.40 3.95 27.40 2.15 

 ALR 6.86 0.85 5.88 0.58 5.90 0.31 6.14 0.50 6.14 0.55 7.06 0.38 6.14 0.50 6.26 0.75 7.07 0.46 
Letter Accuracy 74.02 0.66 72.69 0.83 73.36 0.78 72.57 1.02 72.93 0.64 73.59 0.78 72.71 0.89 73.62 0.73 72.01 0.63 

Top 25% Tree size 629.0 10.43 609.4 10.10 628.2 19.99 624.6 17.25 627.4 15.83 619.8 15.52 629.8 16.52 633.8 26.79 610.2 11.02 
 ALR 0.32 0.01 0.33 0.01 0.32 0.01 0.32 0.01 0.32 0.01 0.32 0.01 0.32 0.01 0.32 0.01 0.33 0.01 

Sick Accuracy 98.41 0.26 98.55 0.33 98.08 0.39 97.89 0.53 97.38 0.60 97.49 0.64 97.74 0.67 97.55 0.45 97.57 0.39 
Top 25% Tree size 12.60 3.56 9.20 1.81 11.20 3.48 11.20 3.41 10.80 3.75 10.80 2.30 8.00 1.44 10.00 1.64 10.00 1.24 

 ALR 14.08 5.68 19.50 4.00 15.53 4.11 16.08 5.65 17.08 6.62 15.39 3.20 21.86 4.25 17.71 2.80 16.21 3.16 
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Table A7 Results of top 50% subsets when crossover rate c and mutation rate m are varied 
 

c=0.6 c=0.7 c=0.8 
m=0.01 m=0.05 m=0.09 m=0.01 m=0.05 m=0.09 m=0.01 m=0.05 m=0.09 Dataset  

Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 
Scheduling Accuracy 98.57 0.32 98.50 0.73 98.13 0.59 98.51 0.48 98.39 0.42 97.29 0.51 98.40 0.37 98.24 0.54 98.61 0.48 
Top 50% Tree size 35.00 4.73 37.40 5.93 34.20 4.07 42.60 3.37 37.80 2.83 36.60 3.95 39.40 3.98 43.80 4.91 42.20 3.40 

 ALR 5.65 0.71 5.32 0.76 5.75 0.61 4.61 0.36 5.18 0.34 5.38 0.58 5.00 0.46 4.52 0.55 4.66 0.34 
Splice Accuracy 90.73 1.01 91.17 0.70 89.49 1.07 90.66 0.83 90.66 0.89 89.29 0.60 88.85 1.06 89.38 1.59 89.94 0.83 

Top 50% Tree size 132.4 14.83 132.8 7.32 119.8 11.03 133.6 11.10 125.0 10.52 124.6 15.40 115.4 19.02 130.0 9.43 128.0 14.96 
 ALR 0.95 0.11 0.94 0.05 1.05 0.09 0.94 0.08 1.00 0.08 1.01 0.12 1.11 0.17 0.96 0.07 0.98 0.10 

Segment Accuracy 95.61 0.50 92.56 1.11 93.88 1.22 94.78 1.44 92.91 1.43 94.46 1.01 94.50 0.69 94.33 0.80 93.67 0.78 
Top 50% Tree size 46.20 5.46 43.00 3.73 49.80 5.52 49.00 7.34 47.00 4.37 42.20 5.53 45.40 5.53 52.20 7.51 44.60 5.56 

 ALR 4.30 0.55 4.57 0.36 3.98 0.40 4.09 0.61 4.20 0.41 4.71 0.61 4.37 0.48 3.84 0.62 4.45 0.56 
Letter Accuracy 79.81 1.04 79.57 1.02 79.85 0.84 79.47 0.73 79.96 0.44 79.96 0.43 79.63 0.83 80.00 0.49 78.97 0.62 

Top 50% Tree size 1069 19.68 1040 18.55 1069 33.22 1041 29.84 1059 12.08 1044 28.99 1058 25.93 1034 25.01 1040 24.26 
 ALR 0.19 0.00 0.19 0.00 0.19 0.01 0.19 0.01 0.19 0.00 0.19 0.01 0.19 0.00 0.19 0.00 0.19 0.00 

Sick Accuracy 98.81 0.15 98.89 0.30 98.47 0.34 98.31 0.34 97.69 0.50 98.16 0.41 97.93 0.50 97.73 0.33 97.73 0.35 
Top 50% Tree size 20.00 3.35 20.80 2.20 18.80 2.57 19.00 7.36 13.40 3.65 23.00 5.93 20.60 8.47 16.20 2.06 18.40 1.63 

 ALR 8.48 1.10 8.12 0.66 9.37 1.06 11.41 6.98 12.90 3.96 8.00 1.76 10.68 5.62 10.36 1.30 8.97 0.62 
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Table A8 Results of top 75% subsets when crossover rate c and mutation rate m are varied 
 

c=0.6 c=0.7 c=0.8 
m=0.01 m=0.05 m=0.09 m=0.01 m=0.05 m=0.09 m=0.01 m=0.05 m=0.09 Dataset  

Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 
Scheduling Accuracy 98.70 0.20 98.88 0.52 98.50 0.52 98.91 0.29 98.80 0.40 98.73 0.36 98.79 0.45 98.26 0.56 98.68 0.44 
Top 75% Tree size 45.00 3.35 45.80 4.39 40.60 2.81 48.20 4.79 42.60 4.38 44.20 5.39 42.60 7.05 47.80 3.89 46.20 4.21 

 ALR 4.37 0.31 4.31 0.39 4.83 0.30 4.10 0.39 4.64 0.50 4.48 0.52 4.71 0.74 4.12 0.31 4.27 0.40 
Splice Accuracy 91.03 0.82 92.14 0.73 90.15 0.55 91.80 0.56 90.75 0.81 90.66 0.70 90.77 0.76 90.53 1.21 91.43. 0.52 

Top 75% Tree size 138.8 13.33 147.4 13.32 136.4 5.23 151.2 12.54 148.4 12.82 141.6 6.42 139.2 9.31 141.0 9.67 144.2 13.89 
 ALR 0.90 0.08 0.85 0.07 0.91 0.03 0.83 0.06 0.84 0.07 0.88 0.04 0.90 0.06 0.89 0.06 0.87 0.08 

Segment Accuracy 95.92 0.86 93.56 0.98 95.54 0.95 94.86 0.50 94.01 0.85 95.05 0.77 94.64 1.01 94.36 0.85 94.71 1.13 
Top 75% Tree size 57.00 4.38 51.00 5.59 57.40 3.82 54.20 5.23 52.20 5.10 49.80 4.60 52.20 3.14 56.20 8.94 49.80 3.54 

 ALR 3.47 0.26 3.89 0.42 3.44 0.22 3.66 0.37 3.79 0.35 3.97 0.35 3.77 0.21 3.59 0.63 3.95 0.25 
Letter Accuracy 82.00 0.59 81.87 0.72 82.02 0.60 81.27 0.65 81.75 0.67 81.82 0.59 81.81 0.68 82.11 0.53 80.72 0.91 

Top 75% Tree size 1284 44.48 1228 28.60 1237 35.07 1209 25.32 1240 20.78 1228 26.39 1230 13.44 1228 26.54 1263 41.74 
 ALR 0.16 0.01 0.16 0.00 0.16 0.00 0.17 0.00 0.16 0.00 0.16 0.00 0.16 0.00 0.16 0.01 0.16 0.01 

Sick Accuracy 98.87 0.22 98.95 0.39 98.55 0.42 98.47 0.35 97.85 0.57 98.17 0.42 98.17 0.37 97.85 0.30 97.73 0.31 
Top 75% Tree size 25.60 4.45 24.80 6.22 29.80 4.54 24.80 6.59 18.60 2.09 28.40 4.50 20.00 7.08 20.80 4.81 19.80 5.32 

 ALR 6.89 0.90 7.25 1.45 6.17 0.98 7.32 1.71 9.22 1.14 6.32 1.04 10.03 3.59 8.35 1.50 9.58 3.65 
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Table A9 Results of best subset when number of subsets M and number of GA generations G are varied 
 

M=5 M=10 M=15 
G=20 G=30 G=40 G=20 G=30 G=40 G=20 G=30 G=40 Dataset  

Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 
Scheduling Accuracy 97.43 0.62 97.54 0.83 96.72 1.22 96.30 0.61 95.97 1.20 95.99 1.08 94.34 0.71 95.21 1.05 94.76 0.71 
Best subset Tree size 17.40 2.33 18.60 2.44 19.00 3.61 8.60 1.65 9.40 3.02 11.00 2.95 3.80 2.41 5.80 1.25 4.60 2.10 

 ALR 12.30 1.82 11.37 1.46 11.44 2.33 22.59 3.49 22.27 7.49 18.63 4.68 59.92 34.99 30.85 4.15 46.54 28.69 
Splice Accuracy 82.86 3.22 82.47 3.90 82.56 2.78 60.26 11.56 60.46 9.43 78.25 4.00 52.94 1.56 72.45 3.11 58.50 8.68 

Best subset Tree size 66.80 7.36 60.80 7.68 67.00 14.14 14.40 16.53 11.60 13.08 33.00 2.97 1.00 1.82 23.00 4.36 8.00 8.75 
 ALR 2.08 0.24 2.26 0.32 2.20 0.65 65.01 50.00 64.59 48.82 3.96 0.30 93.11 2.02 5.72 0.91 64.68 47.16 

Segment Accuracy 92.58 1.12 92.05 1.06 90.09 1.33 88.38 1.15 81.27 3.26 82.17 3.73 82.77 3.31 84.69 1.96 80.14 4.40 
Best subset Tree size 22.20 2.04 24.20 1.66 23.40 3.47 17.00 1.42 14.60 0.99 15.40 1.16 13.40 0.96 13.80 0.88 13.00 0.48 

 ALR 9.50 0.94 8.88 0.53 9.45 1.69 11.78 0.82 13.61 0.73 12.88 0.66 14.38 0.73 13.89 0.88 14.70 0.37 
Letter Accuracy 71.10 3.65 69.28 2.13 68.77 3.18 62.40 2.46 59.63 0.71 59.52 2.51 54.75 1.74 51.90 3.66 51.58 4.61 

Best subset Tree size 507.8 73.22 487.4 38.48 484.2 39.23 302.2 22.58 279.0 8.56 278.6 23.40 210.6 7.92 204.6 17.32 191.8 12.62 
 ALR 0.45 0.08 0.46 0.04 0.46 0.04 0.70 0.06 0.75 0.03 0.76 0.01 0.98 0.04 1.01 0.08 1.07 0.07 

Sick Accuracy 97.68 0.91 97.37 1.51 98.02 0.38 95.31 1.22 94.88 0.86 95.61 1.24 94.16 2.13 94.42 0.43 95.86 1.50 
Best subset Tree size 6.60 0.80 7.80 1.67 8.00 1.31 3.80 2.43 2.60 2.04 4.60 2.03 2.20 1.20 1.00 0.64 3.80 1.72 

 ALR 29.31 3.62 25.97 5.97 24.12 4.76 61.15 35.44 76.94 33.88 46.71 28.53 73.53 26.27 92.86 1.53 51.51 26.24 
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Table A10 Results of top 25% subsets when number of subsets M and number of GA generations G are varied 
 

M=5 M=10 M=15 
G=20 G=30 G=40 G=20 G=30 G=40 G=20 G=30 G=40 Dataset  

Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 
Scheduling Accuracy 97.71 0.42 97.82 0.58 97.49 0.63 98.01 0.50 97.58 0.36 97.22 0.61 97.67 0.76 97.70 0.83 97.44 0.66 
Top 25% Tree size 24.20 2.71 25.40 2.78 25.40 5.03 27.80 3.78 25.00 4.96 28.20 3.40 26.60 3.32 24.60 3.10 25.80 3.80 

 ALR 8.03 0.89 7.66 0.81 7.86 1.50 7.06 0.90 7.96 1.45 6.93 0.74 7.36 0.95 7.92 0.95 7.61 1.05 
Splice Accuracy 86.67 0.73 83.53 1.73 85.28 1.69 85.71 1.96 86.20 1.13 85.38 1.36 86.18 1.35 81.94 1.66 85.30 2.16 

Top 25% Tree size 98.20 6.68 74.80 11.30 74.20 16.94 71.80 18.96 66.80 7.88 75.80 9.18 86.00 15.77 63.60 12.85 83.40 10.72 
 ALR 1.27 0.08 1.71 0.28 1.75 0.34 1.87 0.51 1.88 0.22 1.66 0.19 1.49 0.29 2.05 0.51 1.51 0.21 

Segment Accuracy 90.76 1.52 90.97 1.66 91.31 1.89 92.63 0.78 90.21 1.55 89.65 1.57 90.00 1.32 90.90 1.64 89.90 0.82 
Top 25% Tree size 28.60 1.96 31.00 5.17 29.80 4.90 33.40 3.26 29.40 5.52 29.40 3.80 27.00 5.71 30.60 3.37 29.00 3.89 

 ALR 6.79 0.44 6.42 1.06 6.63 0.90 5.87 0.55 6.77 1.11 6.68 0.84 7.52 1.89 6.39 0.65 6.78 0.91 
Letter Accuracy 72.62 0.63 73.26 1.17 73.64 0.92 73.87 0.76 73.53 0.71 73.06 0.83 72.30 0.62 74.24 0.98 73.53 1.03 

Top 25% Tree size 631.4 18.97 618.6 14.04 626.2 27.09 623.0 7.94 629.0 25.32 621.8 13.45 629.0 14.59 633.8 15.79 629.4 18.29 
 ALR 0.32 0.01 0.32 0.01 0.32 0.01 0.32 0.00 0.32 0.01 0.32 0.01 0.32 0.01 0.32 0.01 0.32 0.01 

Sick Accuracy 97.04 0.40 97.93 0.57 97.42 0.54 98.03 0.69 97.47 0.59 97.33 0.61 97.82 0.50 97.82 0.49 97.92 0.47 
Top 25% Tree size 8.60 1.36 12.40 4.74 11.60 3.18 12.40 2.39 12.40 3.40 11.60 2.38 10.20 3.14 12.00 5.24 12.00 2.84 

 ALR 19.71 4.79 15.49 6.23 15.67 5.80 14.17 3.33 14.23 3.88 14.94 4.16 17.86 5.19 16.52 7.19 14.72 4.38 
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Table A11 Results of top 50% subsets when number of subsets M and number of GA generations G are varied 
 

M=5 M=10 M=15 
G=20 G=30 G=40 G=20 G=30 G=40 G=20 G=30 G=40 Dataset  

Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 
Scheduling Accuracy 98.23 0.13 98.14 0.58 98.42 0.39 98.58 0.43 98.24 0.39 98.49 0.37 98.57 0.61 98.44 0.52 98.05 0.39 
Top 50% Tree size 39.80 4.12 36.60 3.63 35.40 3.98 41.00 3.47 40.20 5.94 35.40 5.04 37.40 6.67 41.00 4.15 35.40 4.57 

 ALR 4.95 0.51 5.37 0.52 5.56 0.64 4.79 0.41 4.95 0.70 5.60 0.76 5.36 0.91 4.81 0.46 5.59 0.80 
Splice Accuracy 90.04 1.19 89.36 0.81 90.02 0.85 91.20 1.30 89.42 0.94 90.90 0.92 88.72 0.90 88.70 1.03 90.28 0.61 

Top 50% Tree size 121.8 8.08 117.2 8.46 119.6 14.74 116.2 9.30 118.2 20.80 135.4 11.66 122.6 11.12 118.6 9.23 131.6 7.49 
 ALR 1.03 0.07 1.06 0.07 1.05 0.14 1.08 0.09 1.08 0.19 0.93 0.08 1.02 0.08 1.05 0.09 0.95 0.05 

Segment Accuracy 93.25 0.51 94.22 0.84 92.94 1.16 94.78 1.26 93.56 0.89 92.98 0.77 92.53 0.79 93.32 0.48 92.39 1.18 
Top 50% Tree size 37.80 6.01 43.40 3.07 43.80 3.55 47.80 2.32 46.60 4.15 44.60 5.49 40.60 3.94 38.20 2.23 44.60 6.70 

 ALR 5.30 0.97 4.58 0.31 4.49 0.35 4.11 0.17 4.23 0.36 4.45 0.53 4.85 0.43 5.12 0.27 4.49 0.69 
Letter Accuracy 77.69 1.04 78.05 0.69 78.70 0.93 80.17 0.60 79.70 0.75 79.71 0.83 78.62 0.86 80.16 0.52 79.79 0.55 

Top 50% Tree size 937.4 17.77 933.8 7.89 949.8 25.12 1071 29.70 1055 42.17 1042 22.79 1048 26.24 1038 14.30 1039 20.56 
 ALR 0.21 0.00 0.21 0.00 0.21 0.01 0.19 0.01 0.19 0.01 0.19 0.00 0.19 0.00 0.19 0.00 0.19 0.00 

Sick Accuracy 97.28 0.29 98.06 0.40 97.80 0.38 98.47 0.52 97.97 0.35 98.00 0.31 97.98 0.43 98.33 0.35 98.51 0.41 
Top 50% Tree size 10.60 3.83 12.00 3.28 12.80 3.58 15.60 4.50 19.80 3.35 17.00 2.51 14.00 5.81 16.20 5.37 21.20 5.20 

 ALR 17.68 5.47 14.82 3.60 14.26 4.74 11.56 4.56 8.40 1.33 10.16 2.13 15.40 6.37 11.29 3.62 8.29 1.75 
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Table A12 Results of top 75% subsets when number of subsets M and number of GA generations G are varied 
 

M=5 M=10 M=15 
G=20 G=30 G=40 G=20 G=30 G=40 G=20 G=30 G=40 Dataset  

Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 
Scheduling Accuracy 98.56 0.42 98.91 0.27 98.84 0.30 98.82 0.38 98.59 0.42 98.75 0.49 98.82 0.33 98.81 0.32 98.51 0.51 
Top 75% Tree size 42.60 2.94 44.20 4.09 44.60 3.09 45.40 4.15 49.80 4.92 42.60 5.90 45.80 6.83 45.80 4.60 48.20 5.42 

 ALR 4.61 0.32 4.46 0.37 4.40 0.28 4.34 0.40 3.98 0.42 4.68 0.69 4.37 0.65 4.31 0.39 4.11 0.46 
Splice Accuracy 91.09 0.77 90.86 1.09 91.62 0.80 92.84 0.80 92.33 1.17 92.33 0.60 90.79 0.95 90.17 0.80 91.52 0.39 

Top 75% Tree size 146.8 12.12 141.8 4.70 148.0 12.07 146.2 6.68 151.2 10.11 152.8 5.91 145.4 9.49 148.0 10.47 138.2 11.5 
 ALR 0.85 0.07 0.88 0.03 0.84 0.07 0.85 0.04 0.82 0.06 0.82 0.03 0.86 0.06 0.84 0.05 0.90 0.07 

Segment Accuracy 93.63 0.40 94.71 1.29 94.84 0.99 95.19 0.35 94.26 1.10 93.15 1.41 93.39 0.62 94.53 1.18 93.29 0.72 
Top 75% Tree size 45.00 4.00 44.20 9.02 45.80 5.09 53.40 4.72 53.40 3.69 51.40 6.33 47.80 2.26 52.20 4.74 49.80 2.33 

 ALR 4.38 0.39 4.52 0.78 4.32 0.42 3.70 0.31 3.69 0.25 3.87 0.42 4.11 0.17 3.79 0.34 3.94 0.16 
Letter Accuracy 80.54 0.40 80.87 0.66 81.26 1.07 82.28 0.38 81.89 0.58 82.05 0.50 80.77 0.52 82.80 0.84 82.67 0.79 

Top 75% Tree size 1137 33.58 1145 31.29 1174 35.89 1244 15.58 1228 27.61 1232 26.84 1304 36.67 1321 21.41 1298 28.17 
 ALR 0.18 0.01 0.17 0.00 0.17 0.01 0.16 0.00 0.16 0.00 0.16 0.00 0.15 0.00 0.15 0.00 0.15 0.00 

Sick Accuracy 97.29 0.24 98.49 0.31 97.82 0.39 98.57 0.42 97.97 0.37 98.14 0.29 98.30 0.34 98.46 0.32 98.59 0.35 
Top 75% Tree size 13.60 4.08 21.80 3.96 14.80 3.80 23.40 5.57 23.40 2.65 21.20 4.75 27.00 9.44 18.20 5.24 21.40 3.69 

 ALR 14.48 4.22 8.09 1.06 12.52 4.23 7.49 1.52 7.19 0.61 8.18 1.32 8.54 5.75 10.65 2.78 8.27 1.27 
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Table A13 Instance selection vs. different decision tree pruning techniques 
 

Minimum leaf  
instance setting 

 without 
pruning 

Instance selection 
without pruning* 

Reduced error 
pruning with 

subtree raising 

Reduced error 
pruning with 

subtree replacement 

C4.5 pruning 
with subtree 

raising 

C4.5 pruning 
with subtree 
replacement Dataset 

Minimum 
leaf 

instances  
Tree 
size 

Accuracy 
Tree 
size 

Accuracy 
Tree 
size 

Accuracy 
Tree 
size 

Accuracy 
Tree 
size 

Accuracy 
Tree 
size 

Accuracy 

5 1637 85.9 857.0 81.6 965 82.8 965 82.7 1499 85.9 1519 85.8 

10 987 83.2 509.0 76.7 647 80.1 647 80.1 931 83.2 943 83.2 Letter 

15 755 81.3 348.6 73.0 409 75.7 503 76.1 589 79.2 717 81.2 
5 61 99.4 33.0 98.6 43 99.1 43 99.1 55 99.4 57 99.4 
10 47 99.1 24.2 98.1 37 98.7 37 98.7 41 99.1 45 99.1 Scheduling 
15 43 98.9 18.2 97.6 29 97.9 33 98.4 35 98.6 41 98.9 
5 332 92.7 172.0 90.5 154 92.7 154 92.7 171 94.4 171 94.4 
10 213 91.2 116.2 87.9 142 90.9 142 90.9 134 92.5 134 92.5 Splice 
15 156 90.3 66.4 85.3 74 86.5 94 89.4 108 89.9 136 90.8 
5 75 96.0 36.2 94.6 43 95.0 43 95.0 59 96.0 59 95.9 
10 47 95.1 25.0 92.4 39 94.9 39 94.9 47 95.0 47 95.1 Segment 
15 39 95.0 20.6 90.4 31 92.8 31 93.8 33 94.3 39 95.0 
5 50 98.9 15.6 98.1 39 98.3 39 98.3 34 98.8 36 98.7 

10 37 98.5 10.0 97.9 17 98.0 17 98.0 28 98.6 28 98.5 Sick 

15 24 98.3 8.6 97.5 7 97.9 14 97.7 14 98.1 24 98.3 

A
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*: Scheduling, segment and sick: use top 50% selected instances; Letter and splice: use top 75% selected instances to obtain good accuracies 
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APPENDIX C  STATISTICAL SIGNIFICANCE TESTS 
Table A14 Statistical significance tests for different M and y in instance selection 

M=5 to 10 M=10 to 15 M=5 to 15 
Dataset 

Tests for 
different 

M 
t vt ,α  Reject? t vt ,α  Reject? t vt ,α  Reject? 

Scheduling Accuracy 4.099 1.734 Y 6.860 1.734 Y 10.633 1.734 Y 
 Tree size 9.730 1.740 Y 5.161 1.746 Y 12.938 1.734 Y 
 ALR -8.276 1.771 Y -3.353 1.833 Y -4.295 1.833 Y 

Splice Accuracy 5.939 1.812 Y 1.998 1.833 Y 26.517 1.771 Y 
 Tree size 9.163 1.782 Y 2.553 1.833 Y 27.322 1.812 Y 
 ALR -3.978 1.833 Y -1.776 1.833 N -143.170 1.833 Y 

Segment Accuracy 8.159 1.734 Y 5.043 1.796 Y 8.909 1.796 Y 
 Tree size 6.736 1.746 Y 6.617 1.746 Y 12.445 1.771 Y 
 ALR -6.040 1.734 Y -7.735 1.734 Y -13.590 1.740 Y 

Letter Accuracy 6.161 1.746 Y 7.950 1.746 Y 12.659 1.771 Y 
 Tree size 8.487 1.796 Y 12.099 1.796 Y 12.765 1.833 Y 
 ALR -4.472 1.734 Y -6.708 1.734 Y -11.180 1.734 Y 

Sick Accuracy 5.060 1.740 Y 1.438 1.761 N 4.844 1.782 Y 
 Tree size 3.500 1.796 Y 1.886 1.771 Y 9.648 1.746 Y 
 ALR -2.835 1.833 Y -0.882 1.740 N -5.265 1.833 Y 

Best to Top 25% Top 25% to Top 50% Top 50% to Top 75% 
Dataset 

Tests for 
different y t vt ,α  Reject? t vt ,α  Reject? t vt ,α  Reject? 

Scheduling Accuracy 6.883 1.740 Y 2.963 1.740 Y 1.118 1.734 N 

 Tree size 14.585 1.782 Y 8.080 1.734 Y 2.545 1.740 Y 
 ALR 13.563 1.812 Y 7.385 1.782 Y 2.795 1.734 Y 

Splice Accuracy 6.824 1.812 Y 7.291 1.753 Y 3.315 1.753 Y 
 Tree size 7.213 1.734 Y 6.637 1.771 Y 8.277 1.746 Y 
 ALR 3.991 1.833 Y 4.961 1.812 Y 6.325 1.833 Y 

Segment Accuracy 9.209 1.746 Y 4.558 1.753 Y 0.930 1.796 N 

 Tree size 14.467 1.782 Y 11.321 1.746 Y 3.384 1.771 Y 
 ALR 18.657 1.740 Y 9.000 1.796 Y 3.508 1.746 Y 

Letter Accuracy 13.854 1.796 Y 19.922 1.740 Y 9.209 1.746 Y 
 Tree size 42.373 1.796 Y 46.118 1.812 Y 16.317 1.761 Y 
 ALR 12.586 1.833 Y 22.361 1.734 Y 0 1.734 N 

Sick Accuracy 6.146 1.761 Y 1.838 1.746 Y 0.494 1.740 N 

 Tree size 8.013 1.734 Y 1.984 1.761 Y 3.433 1.740 Y 
 ALR 4.180 1.833 Y 1.452 1.746 N 2.680 1.796 Y 
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APPENDIX D  DIFFERENT CROSSOVER OPERATIONS 

Table A15  GA-based instance selection using 1-point crossover 
Best Top 25% Top 50% Top 75% 

Dataset 
1-point 

crossover Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 
Scheduling Accuracy 95.9 0.8 97.2 0.6 98.3 0.4 98.4 0.3 

 Tree size 12.2 1.0 28.2 4.5 39.8 3.3 41.4 2.3 
 ALR 15.9 1.3 8.2 1.6 4.9 0.4 4.7 0.3 

Splice Accuracy 76.3 2.7 85.1 2.3 90.9 1.6 91.7 0.5 
 Tree size 35.2 0.6 87.0 11.6 126.8 9.1 153.8 13.5 
 ALR 3.7 0.1 1.5 0.2 1.0 0.1 0.9 0.1 

Segment Accuracy 87.3 2.5 89.8 1.5 92.5 1.0 93.4 1.1 
 Tree size 17.6 0.9 34.8 5.9 48.8 3.0 58.2 3.2 
 ALR 12.0 0.6 6.3 1.2 4.3 0.3 4.1 0.2 

Letter Accuracy 66.8 3.5 72.1 1.0 79.3 0.6 81.4 0.8 
 Tree size 317.4 15.2 640.2 23.6 1079.2 37.7 1247.8 30.6 
 ALR 0.8 0.0 0.3 0.0 0.2 0.0 0.2 0.0 

Sick Accuracy 95.6 0.7 97.7 0.6 98.0 0.6 98.1 0.6 
 Tree size 5.0 0.4 13.6 2.9 16.2 3.1 25.0 9.1 
 ALR 35.0 0.4 11.6 1.7 10.8 2.9 8.8 2.8 

 
Table A16 GA-based instance selection using 2-point crossover 

Best Top 25% Top 50% Top 75% 
Dataset 

2-point 
crossover Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 

Scheduling Accuracy 96.3 0.6 98.0 0.5 98.6 0.4 98.8 0.4 
 Tree size 8.6 1.7 27.8 3.8 41.0 3.5 45.4 4.2 
 ALR 22.6 3.5 7.1 0.9 4.8 0.4 4.3 0.4 

Splice Accuracy 60.3 11.6 85.7 2.0 91.2 1.3 92.8 0.8 
 Tree size 14.4 16.5 71.8 19.0 116.2 9.3 146.2 6.7 
 ALR 65.0 50.0 1.9 0.5 1.1 0.1 0.9 0.0 

Segment Accuracy 88.4 1.2 92.6 0.8 94.8 1.3 95.2 0.4 
 Tree size 17.0 1.4 33.4 3.3 47.8 2.3 53.4 4.7 
 ALR 11.8 0.8 5.9 0.6 4.1 0.2 3.7 0.3 

Letter Accuracy 62.4 2.5 73.9 0.8 80.2 0.6 82.3 0.4 
 Tree size 302.2 22.6 623.0 7.9 1071.2 29.7 1244.3 15.6 
 ALR 0.7 0.1 0.3 0.0 0.2 0.0 0.2 0.0 

Sick Accuracy 95.3 1.2 98.0 0.7 98.5 0.5 98.6 0.4 
 Tree size 3.8 2.4 12.4 2.4 15.6 4.5 23.4 5.6 
 ALR 61.2 35.4 14.2 3.3 11.6 4.6 7.5 1.5 
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APPENDIX D  DIFFERENT CROSSOVER OPERATIONS 

(CONTINUED) 

Table A17 GA-based instance selection using uniform crossover 
Best Top 25% Top 50% Top 75% 

Dataset 
uniform 

crossover Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 
Scheduling Accuracy 94.9 0.7 97.9 0.5 98.1 0.1 98.6 0.4 

 Tree size 8.6 0.8 28.0 2.5 41.4 4.6 47.8 2.7 
 ALR 21.9 2.0 8.4 0.8 4.8 0.6 4.1 0.2 

Splice Accuracy 68.9 9.3 84.8 0.8 90.4 1.1 90.8 0.3 
 Tree size 29.2 14.5 72.0 7.9 126.6 10.5 147.2 12.1 
 ALR 24.0 40.8 1.8 0.2 1.0 0.1 0.9 0.1 

Segment Accuracy 86.0 3.1 91.8 1.0 94.0 1.0 94.7 0.8 
 Tree size 16.2 2.9 35.6 3.7 48.2 6.8 55.4 4.7 
 ALR 12.5 1.8 6.0 0.6 4.5 0.6 3.8 0.3 

Letter Accuracy 59.9 1.8 72.1 0.6 79.5 0.4 81.2 0.5 
 Tree size 286.6 11.7 629.4 14.1 1072.2 23.5 1267.0 35.4 
 ALR 0.7 0.0 0.3 0.0 0.2 0.0 0.2 0.0 

Sick Accuracy 95.1 1.9 97.9 0.5 98.2 0.5 98.4 0.4 
 Tree size 4.6 2.1 13.2 3.5 18.2 7.0 25.4 4.9 
 ALR 47.3 28.6 18.5 6.2 10.8 4.8 8.5 1.3 
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APPENDIX E  DIFFERENT SELECTION OPERATIONS  

Table A18 GA-based instance selection using ranking selection and 2-point crossover 
Best Top 25% Top 50% Top 75% 

Dataset 
Ranking  
selection Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 

Scheduling Accuracy 97.7 0.7 98.6 0.4 99.2 0.3 99.4 0.2 
 Tree size 18.3 4.2 31.7 3.1 52.3 5.7 59.7 7.2 

Splice Accuracy 85.9 2.1 89.1 0.8 92.9 0.6 93.0 0.5 
 Tree size 49.8 13.9 105.4 4.7 143.6 6.4 163.0 10.1 

Segment Accuracy 91.8 0.8 93.7 0.6 95.9 0.7 96.8 0.7 
 Tree size 24.6 1.4 35.4 5.7 44.6 3.1 56.4 6.2 

Letter Accuracy 61.7 4.0 80.0 0.7 86.7 0.4 88.9 0.3 
 Tree size 248.6 43.9 810.8 32.7 1221.4 43.9 1547.2 32.9 

Sick Accuracy 97.9 0.2 98.1 0.3 98.4 0.3 98.7 0.2 
 Tree size 7.6 1.4 11.3 3.4 17.7 2.9 25.4 2.4 

 
Table A19 GA-based instance selection using roulette wheel selection and 2-point crossover 

Best Top 25% Top 50% Top 75% 
Dataset 

Roulette wheel 
selection Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E. 

Scheduling Accuracy 96.3 0.6 98.0 0.5 98.6 0.4 98.8 0.4 
 Tree size 8.6 1.7 27.8 3.8 41.0 3.5 45.4 4.2 

Splice Accuracy 60.3 11.6 85.7 2.0 91.2 1.3 92.8 0.8 
 Tree size 14.4 16.5 71.8 19.0 116.2 9.3 146.2 6.7 

Segment Accuracy 88.4 1.2 92.6 0.8 94.8 1.3 95.2 0.4 
 Tree size 17.0 1.4 33.4 3.3 47.8 2.3 53.4 4.7 

Letter Accuracy 62.4 2.5 73.9 0.8 80.2 0.6 82.3 0.4 
 Tree size 302.2 22.6 623.0 7.9 1071.2 29.7 1244.3 15.6 

Sick Accuracy 95.3 1.2 98.0 0.7 98.5 0.5 98.6 0.4 
 Tree size 3.8 2.4 12.4 2.4 15.6 4.5 23.4 5.6 
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APPENDIX F  HISTOGRAMS BEFORE AND AFTER 

INSTANCE SELECTION  

 

FIGURE A1-A12 (PAGE 109-120) 
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Figure A1 Histograms for sick dataset before instance selection 
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Figure A2 Histograms for sick dataset after instance selection using best subset 
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Figure A3 Histograms for letter dataset before instance selection 
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Figure A4 Histograms for letter dataset after instance selection using top 50% subsets 
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Figure A5 Histograms for scheduling dataset before instance selection 
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Figure A6 Histograms for scheduling dataset after instance selection using best subset 
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Figure A7 Histograms for segment dataset before instance selection 
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Figure A8 Histograms for segment dataset after instance selection using top 50% subsets 
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Figure A9 Histograms for splice dataset before instance selection (part I) 
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Figure A10 Histograms for splice dataset before instance selection (part II) 
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Figure A11 Histograms for splice dataset after instance selection using top 50% subsets (part I)  
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Figure A12 Histograms for splice dataset after instance selection using top 50% subsets (part II) 
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APPENDIX G  TOUR PLOTS AND DECISION TREE 

VISUALIZATIONS  

 
FIGURE A13-A20 (PAGE 122-129) 
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Figure A13 Tour plots for scheduling dataset before/after instance selection 
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Figure A14 Decision trees for scheduling dataset before/after instance selection 
 

 
 

l Before instance selection, the decision tree splits on 6 attributes: Job_2, Due_Date_1, Due_Date_2, Release_Time_2, Processing_time_2 and 
Weight_2; the tree has 35 leaves and 69 nodes.  

l After instance selection, the decision tree splits on 3 attributes: Job_2, Due_Date_1 and Due_Date_2; the tree has 5 leaves and 9 nodes. And the 
two classes are better separated in the tour plot.  
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Figure A15 Example tour plots for splice dataset before/after instance selection showing the separation between “N” and other classes 
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Figure A16 Example decision trees for splice dataset before/after instance selection showing the classification between “N” and other classes 
 

 
 

l Before instance selection, the decision tree splits on 7 attributes: attribute_30, attribute_29, attribute_32, attribute_31, attribute_35, attribute_20, and 
attribute_34; the tree has 93 leaves and 115 nodes.  

l After instance selection, the decision tree splits on 9 attributes: attribute_30, attribute_28, attribute_29, attribute_32, attribute_18, attribute_5, 
attribute_34, attribute_35, and attribute_31; the tree has 64 leaves and 85 nodes. Class “N” and the other two classes (“EI” and “IE”) are better 
separated in the tour plot.  
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Figure A17 Tour plots for segment dataset before/after instance selection 
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Figure A18 Decision trees for segment dataset before/after instance selection 
 

 
 
l Before instance selection, the decision tree splits on 11 attributes: region-centroid-row, rawred-mean, hue-mean, saturation-mean, 

region-centroid-col, exred-mean, rawblue-mean, exgreen-mean, vedge-mean, rawgreen-mean and exblue-mean; the tree has 39 leaves and 77 
nodes. 

l After instance selection, the decision tree splits on 5 attributes: region-centroid-row, rawred-mean, exgreen-mean, intensity-mean and hue-mean; 
the tree has 9 leaves and 17 nodes. And the three classes are better separated in the tour plot. 
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Figure A19 Example tour plots for letter dataset before/after instance selection showing the separation between “A” and other classes 
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Figure A20 Example decision trees for letter dataset before/after instance selection showing the classification between “A” and other classes 
 

 

 
l Before instance selection, the decision tree splits on 12 attributes: x2ybr, y2bar, x-bar, y-bar, x-ege, x2bar, xybar, y-ege, onpix, x-box, yegvx and 

xegvy; the tree has 50 leaves and 99 nodes. 
l After instance selection, the decision tree splits on 6 attributes: x2ybr, y2bar, xegvy, y-bar, x2bar and xybar; the tree has 7 leaves and 13 nodes. 

Class “A” and other classes are better separated in the tour plot. 
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APPENDIX H  DECISION TREE ON UNBALANCED DATA  

Table A20 Performance of the decision tree on scheduling data before/after instance selection  
After instance selection (using best subset) Before instance selection 

(10-fold cross validation) 10-fold cross validation Independent test set 
Scheduling data 
confusion matrix 

Yes No Yes No Yes No 
Classified as yes 6719 17 447 5 2265 63 
Classified as no 14 390 1 23 7 45 

True positive rate (Recall) 99.8% 95.8% 99.8% 82.1% 99.7% 41.7% 
False positive rate 4.2% 0.2% 17.9% 0.2% 58.3% 0.3% 

Precision 99.7% 96.5% 98.9% 95.8% 97.3% 86.5% 
Kappa statistic 0.96 0.88 0.55 

Overall accuracy 99.6% 98.7% 97.1% 
After instance selection (using best subset) 
Incorporate recall into GA fitness function 

Before instance selection 
(10-fold cross validation) 

10-fold cross validation Independent test set 
Scheduling data 

Confusion matrix 
Yes No Yes No Yes No 

Classified as yes 6719 17 440 5 2193 18 
Classified as no 14 390 2 29 79 90 

True positive rate (Recall) 99.8% 95.8% 99.5% 85.3% 96.5% 83.3% 
False positive rate 4.2% 0.2% 14.7% 0.5% 16.7% 3.5% 

Precision 99.7% 96.5% 98.9% 93.5% 99.2% 53.3% 
Kappa statistic 0.96 0.88 0.63 

Overall accuracy 99.6% 98.5% 95.9% 

 
Table A21 Performance of the decision tree on splice data before/after instance selection 

After instance selection (using top 50% subsets) Before instance selection 
(10-fold cross validation) 10-fold cross validation Independent test set 

Splice data 
confusion matrix 

EI IE N EI IE N EI IE N 
Classified as EI 737 40 34 232 19 24 235 19 11 
Classified as IE 14 702 59 14 225 24 4 203 38 
Classified as N 16 26 1562 11 8 503 12 14 528 

True positive rate (Recall) 96.1% 91.4% 94.4% 90.3% 89.3% 91.3% 93.6% 86.0% 91.5% 
False positive rate 3.1% 3.0% 2.7% 5.4% 4.7% 3.7% 3.7% 5.1% 5.3% 

Precision 90.9% 90.6% 97.4% 84.4% 85.6% 96.4% 88.7% 82.9% 95.3% 
Kappa statistic 0.90 0.84 0.85 

Overall accuracy 94.1% 90.6% 90.8% 
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