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ABSTRACT

Instance selection plays an important role in improving scalability of data mining algorithms,
but it can also be used to improve the quality of the data mining results. In this dissertation
we present a new optimization-based approach for instance selection that uses a genetic
algorithm (GA) to select a subset of instances to produce a simpler decision tree with
acceptable accuracy. The resultant trees are likely to be easier to comprehend and interpret by
the decision maker and hence more useful in practice. We present numerical results for
several difficult test datasets that indicate that GA-based instance selection can often reduce
the size of the decision tree by an order of magnitude while still maintaining good prediction
accuracy. The results suggest that GA-based instance selection works best for low entropy
datasets. With higher entropy, there will be less benefit from instance selection. A
comparison between GA and other heuristic approaches such as Rmhc (Random Mutation
Hill Climbing) and simple construction heuristic, indicates that GA is able to obtain a good
solution with low computation cost even for some large datasets. One advantage of instance
selection is that it is able to increase the average instances associated with the leaves of the
decision trees to avoid overfitting, thus instance selection can be used as an effective
alternative to prune decision trees. Finally, the analysis on the selected instances reveals that
instance selection helps to reduce outliers, reduce missing values, and select the most useful

instances for separating classes.
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CHAPTER 1. INTRODUCTION

1.1 Literature Review and Related Research

In recent years, the field of data mining has seen an explosion of interest from both academia
and industry. Driving this interest is the fact that data collection and storage has become
easier and less expensive, so databases in modern enterprises are now often massive. These
massive databases often contain a wealth of important data that traditional methods of
analysis fail to transform into relevant knowledge. Specifically, meaningful knowledge is
often hidden and unexpected, and hypothesis driven methods, such as on-line analytical
processing and most statistical methods, will generally fail to uncover such knowledge.
Inductive methods, which learn directly from the data without an a priori hypothesis, can
uncover hidden patterns and knowledge (Olafsson et al. 2004).

In this study, the term data mining is used to refer to all aspects of an automated or
semi-automated process for extracting previously unknown and potentially useful knowledge
and patterns from large databases. This field has become very popular and found various
applications. The process of data mining involves numerous steps, including data integration
and preprocessing, inductive learning from the instances in the prepared database, and
evaluation and interpretation of the resulting patterns. Inductive learning, which may be

considered as the core of the process, typically involves one or more of three learning tasks:
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classification, data clustering, or association rule discovery. This study focuses on
classification, which is one of the most common learning tasks. In classification, there is a
specific attribute called the class attribute that can take a given number of values, and the
goal is to induce a model that can be used to discriminate new data into classes according to
those values. The induction is based on a labelled training set, where each instance is labelled
according to the value of the class attribute. The objective of the classification is to first
analyse the training data and develop an accurate description or a model for each class using
the attributes available in the data. Such class descriptions are then used to classify future
independent test data or to develop a better description for each class. The accuracy of the
model is usually measured by the proportion of the number of correctly classified instances
over the number of total instances in the test data. Many methods have been studied for
classification (Fayad et al.,, 1996; Weiss and Kulikowski, 1991), including decision tree
induction (Quinlan, 1993), support vector machines (Boser et al., 1992), neural networks
(Ripley, 1996), and Bayesian networks (Jensen, 2001).

Data preparation is one of the most important and time consuming phases in knowledge
discovery (Reinartz, 2001). Preparation tasks (such as data selection, data cleaning, data
construction, data integration, and data formatting) often determine the success of data
mining engagements. In this research, the importance of instance selection is the primary
focus because the size of current and future databases often exceeds the amount of data

which current data mining algorithms can handle properly. Hence, we argue that by using
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instance selection to reduce the data before data mining, existing data mining algorithms can

be used to analyze the data.

1.1.1 Instance Selection

Instance selection has only recently been investigated from the perspective of selecting the
best instances to improve model performance. Originally there were several reasons for
instance selection. The first of them is to reduce the noise in original dataset because some
learning algorithms may be noise-fragile (for example, linear discrimination methods (Duda
et al. 1997)). The second reason to shrink the training set is to reduce the amount of
computation, especially for instance-based learning algorithms (Ada et al. 1991) such as the
k-nearest neighbours (Cover and Hart, 1967), or for very large training sets.

Historically, instance selection to improve model performance has been focused on
improving the efficiency of the nearest neighbour classifier. This was a clear motivation
since storage requirements and computational costs make the nearest neighbour approach
unsuitable for dealing with very large datasets. Therefore, quite a few of methods have
therefore been proposed to select instances for the nearest neighbour approach. Several
methods have been proposed involving sampling techniques.

For the sampling approaches, perhaps the most important but very difficult issue is
determining the appropriate sample size to maintain acceptable accuracy. This includes

simple random sampling, stratified sampling by selecting the minor classes more frequently
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in order to make the class values uniformly distributed, adaptive sampling in which
sequential sampling is used to scale up knowledge discovery algorithms (Domingo et al.
2001), progressive sampling by using progressively larger samples as long as model accuracy
improves to obtain appropriate training set size (Provost et al. 2001), and the Rmhc method
of Skalak (1994), which is one kind of random mutation hill climbing algorithm: First, subset
S is formed by randomly selecting from training set 7, containing a fixed number of instances.
In each iteration, the algorithm interchanges an instance from S with another from 7. The
change is maintained if it offers better accuracy. A similar approach was used by Wilson
(1997), except that instead of interchanging instances one at a time all of the instances in S
are exchanged and the new candidate instances were kept if the accuracy improved.
Additional methods based on nearest neighbour (NN) rules are listed in Table 1 (Cano et al.

2003; Jankowski and GrochowskiL, 2004):

Table 1 Different methods for instance selection based on NN rules

Method Reference Brief description of the method
Condensed Nearest Neighbor Rule: CNN tries to find a consistent subset,
CNN Hart (1968) . ) . o
which correctly classifies all of the remaining points in the sample set.
Edited Nearest Neighbor: ENN removes a given instance if its class does not
ENN Wilson (1972)  agree with the majority class of its neighbors. This removes noisy instances,
as well as close border cases, leaving smoother decision boundaries.
) Repeated Edited Nearest Neighbor: RENN applies ENN repeatedly as long
RENN Wilson (1972) .
as any changes are observed in the selected set.
Reduced Nearest Neighbor: RNN starts from original training set and rejects
RNN Gates (1972) .
only those instances that do not decrease accuracy.
It removes an instance if most of its nearest neighbors classify it correctly or
VSM Lowe (1995)

incorrectly.

Multiedit Devijver and It is a modification over ENN algorithm that guarantees the statistical
ultiedi
Kittler (1982)  independence in the prototype selected.
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Table 1 Different methods for instance selection based on NN rules (continued)

Method Reference Brief description of the method
Shrink Kibbler and Aha  Similar to the RNN, it retains border points, but unlike RNN, this algorithm
(1987) is sensitive to noise.
B2 Kibbler and Aha It is similar to CNN but selecting only those instances that cannot be
(1987) correctly classified. IB2 is sensitive to noise.
. IB3 reduces the noise sensitivity of IB2 by only retaining acceptable
Aha and Kibbler ) ] ) . . .
IB3 (1991 misclassified instances. IB3 achieves greater data reductions and higher
accuracy than IB2 on unseen instances.
ICF Brighton and Iterative Case Filtering: ICF tries to select the instances which classify more
Mellish (2002)  prototypes correctly. Reachability and coverage are used in the selection.
Dropl Wilson and Dropl removes instance x from the training set if it does not change
Martinez (1997) classification of instances from A4(x) (only those instances depend on x).
Drop2 Wilson and Drop2 sorts instances according to their distances from the nearest opposite
Martinez (1997) class instance.
Drop3 Wilson and Drop3 additionally runs the ENN algorithm before starting the Drop2
Martinez (1997)  algorithm.

Another approach to instance selection is an evolutionary algorithm (EA). The success of

evolutionary algorithms is largely due to their ability to exploit the information accumulated

about an initially unknown search space. This is their key feature, particularly in large,

complex, and poorly understood search spaces, where classical optimization methods do not

work well. In such cases, they offer an alternative approach to problems requiring efficient

and effective search techniques. Examples of such work includes the work of Reeves (2001),

in which GAs were used for instance selection in order to improve the generalization of

Radial Basis Function (RBF) networks. RBF networks have traditionally been associated

with radial functions in a single-layer linear neural network. Ishibuchi et al. (2001) presented

a genetic-algorithm-based instance and feature selection in a nearest neighbour classifier. The
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results show that the generalization ability of nearest neighbour classifiers improves for
datasets with large overlaps between different classes.

Cano et al. (2003) described four models of EAs that were evolutionary instance selection
algorithms, namely, two classical GA models including generational genetic algorithm and
steady-state genetic algorithm, heterogeneous recombination and cataclysmic mutation (CHC)
adaptive search algorithm, which is a classical model that introduces different features to
obtain a trade-off between exploration and exploitation, and Population-Based Incremental
Learning (PBIL), which is a specific EA designed for binary search spaces and attempts to
explicitly maintain statistics about the search space to decide where to sample next. Their
results show that EAs outperform the classical algorithms based on nearest neighbour rules
and random sampling, simultaneously offering two main advantages: better data reduction
percentages and higher classification accuracy.

There are two key issues in using evolutionary algorithms for instance selection: the
representation of the solutions and the definition of the fitness function. Prior research
primarily used binary representation of the solution (Ramon, 2003; Cano 2004). A
chromosome consists of genes (one for each instance in 7) with two possible states: 0 and 1.
If the gene is 1, then its associated instance is included in S (the subset of 7') which represents
the chromosome. If it is 0, then it is not included. A widely used fitness function is the

combination of two values: the classification accuracy associated with the selected subset S
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of instances and the percent reduction in instances of S with regards to 7" (Ramon, 2003;
Cano 2004).

Some unconventional instance selection methods have been used in specific applications.
Lam et al. (2001) integrated instance-filtering and instance-averaging techniques for
instance-based learning algorithms with good performance in data reduction and
classification accuracy. Wang (2001) generated a set of representative instances based on a
model of data built on hypertuples for nearest neighbour classifier and in some cases the
selected instances outperformed the C5 decision tree classifier. Wright and Hodges (2001)
incorporated domain knowledge (i.e. missing attributes and the relative importance of
different attributes) into a multi-criteria decision-making technique to guide instance

selection.

1.1.2 Decision Trees

Decision trees are a popular technique for classification. The main reason behind their
popularity is their relative advantage in terms of interpretability. Their popularity is also
aided by available implementations such as CART (Breiman et al., 1984) and C4.5 (Quinlan,
1993). Several advantages of the decision tree as a classification tool have been pointed out

in the literature (Maimon and Rokach, 2005):
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® Decision tree is self-explanatory and easy to follow. Furthermore, they can be converted
to a set of decision rules by forming a rule corresponding to each path from the root of
the tree to each of its leaves. Thus, this representation is considered comprehensible.

® Decision tree can handle both nominal and numerical attributes.

® Decision tree is capable of handling datasets that may have errors or missing values.

® Decision tree is considered to be a nonparametric method, that is, there are no
assumptions about the space distribution and the classifier structure.

A decision tree is expressed as a recursive partition of the instance space. Most decision
tree induction algorithms construct a tree in a top-down manner by selecting attributes one at
a time and splitting the data according to the values of those attributes. The most important
attribute is selected as the top split node, and so forth. Some common splitting criteria
include impurity-based criteria (Rokach and Maimon, 2005), information gain (Quinlan,
1987), gain ratio (Quinlan, 1993), gini index (Breiman et al. 1984), likelihood-ratio
Chi-squared statistics (Attneave, 1959), DKM criterion (Dietterich et al. 1996), distance
measure (Lopez de Mantras, 1991), towing criterion (Breiman et al. 1984), orthogonal
criterion (Fayyad and Irani, 1992), Kolmogorov-Smirnov criterion (Friedman, 1977), and
AUC-splitting criteria (Ferri, et al. 2002). Comparative studies of the splitting criteria have
been conducted by several researchers during the last thirty years, such as Baker and Jain
(1976), Fayyad and Irani (1992), Loh and Shih (1997), and Lim et al. (2000). In most of the

cases, the choice of splitting criteria will not make much difference on the tree performance.
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For example, in C4.5 attributes are chosen to maximize the information gain ratio in the
split (Quinlan, 1993). This is an entropy measure designed to increase the average class

purity of the resulting subsets. The entropy function is defined by

C

Entropy(S) =Y - p,log, p, (1)

i=1
where S represents the training data and p; is the proportion of S classified as class i. Then the

information gain Gain(S,a) is defined as:

S
Gain(S,a) = Entropy(S) — Z uEm‘ropy(Sv)
veValues(a) | S | (2)
S, ={seS:a(s)=v}
where Values(a) represents all possible values for attribute a. Gain(S,a) implies the expected

information provided about the classification from knowing the value of attribute a, but it

tends to favor attributes that have a large number of values. For example, if we have an

. . ) S
attribute a that has a distinct value for each instance, then Z uEm‘ropy(Sv) =0,

veValues(a)

thus Gain(S,a) is maximal. To compensate for this, C4.5 algorithm uses the following ratio in
equation (3) instead of Gain, here Splitinfo(S,a) is the information due to the split of S on the
basis of the value of attribute a. Notice that the Splitinfo term discourages the selection of

attributes with many uniformly distributed values.

GainRatio(S,a) = M

Splitinfo(S,a) 3)
Splitinfo(S,a) = — Z M10 IS, ]

veValues(a) | S | | S |
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Algorithms such as C4.5 and CART are computationally efficient and have proven very
successful in practice. However, the greedy characteristic of decision trees leads to one
disadvantage which is its over-sensitivity to the training data, to irrelevant attributes, and to
noise (Quinlan, 1993). Also as decision trees use the “divide and conquer” method, they tend
to perform well if a few highly relevant attributes exist, but less so if many complex
interactions are present, in some cases the tree will contain several duplications of the same
subtree in order to represent the classifier (Pagallo and Huassler, 1990).

As for other classification methods, the quality of decision trees is primarily measured in
terms of its accuracy in classifying new data. However, we argue that the complexity of the
decision tree is also important and must be controlled. Naturally, decision-makers prefer less
complex decision trees, since they may be considered more comprehensible. Usually the tree
complexity is measured by one of the following metrics (Rokach and Maimon, 2005): the
total number of nodes, total number of leaves, tree depth, and number of attributes used.
According to Breiman et al. (1984), the tree complexity has a crucial effect on its accuracy.
Furthermore, since interpretability is a major motivation in the use of decision trees the
complexity of the tree becomes critical. If the tree is too complex then it may no longer be
easily interpretable. Here we measure the complexity of the tree in terms of the total number
of nodes, which we refer to as the size of the tree, and the quality of the tree is measured in

terms of a combination of the accuracy and the size of the tree. So typically the goal is to find
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the optimal decision tree by minimizing the prediction error as well as minimizing the
number of nodes.

Unfortunately finding the minimal decision tree consistent with the training set is an
NP-hard problem (Hancock et al. 1996). Moreover, it has been shown that constructing a
minimal binary tree with respect to the expected number of tests required for classifying an
unseen instance is NP-complete (Hyafil and Rivest, 1976). Even finding the minimal
equivalent decision tree for a given decision tree (Zantema and Bodlaender, 2000) or
building the optimal decision tree from decision tables is known to be NP-hard (Naumov,
1991) and heuristics must be applied. Kennedy et al. (1997) first developed a genetic
algorithm for optimizing decision trees. In their approach, a binary tree is represented by a
number of unit subtrees, each having a root node and two branches. In more recent work, Fu
et al. (2003a; 2003b; 2004) also used genetic algorithms for this task. Their method uses C4.5
to generate K trees as the initial population, and then exchanges the subtrees between trees
(crossover) or within the same tree (mutation). At the end of a generation, logic checks and
pruning are carried out to improve the decision tree. They show that the resulting tree
performs better than C4.5 and the computation time only increases linearly as the size of the
training and scoring combination increases. Furthermore, creating each tree only requires a
small percent of data to generate high-quality decision trees. In related work, Dhar et al.

(2000) use an adaptive resampling method where instead of using a complete decision tree as
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the chromosomal unit, a chromosome is simply a rule, that is, any complete path from the
root node of the tree to a leaf node.

Previous research using genetic algorithms to optimize decision trees did not address
controlling the growth of the tree, because the genetic algorithm does not evaluate the size of
the tree, only the accuracy. GA may lead to a tree that becomes either overly complex or the
search may settle to a too simple tree. To address this, Niimi and Tazaki (2000) combined
genetic programming with an association rule algorithm for decision tree construction. In this
approach, rules generated by the Apriori association rule discovery algorithm (Agrawal et al.,
1993) were used as the initial individual decision trees for a subsequent genetic programming
algorithm. Another approach to improve the optimization of the decision tree is to improve
the fitness function used by the genetic algorithm. Traditional fitness functions use the mean
accuracy as the performance measure. Fu et al. (2003b) investigated the use of various
percentiles of the distribution of classification accuracy, in place of the mean, and developed
a genetic algorithm that simultaneously considers two fitness criteria. In other work, the
utilization of a fitness function based on the J-Measure, which determines the information
content of a tree, was used as a preference criterion to find the decision tree that classifies a
set of instances in the best way (Folino et al., 2001).

Previous research on optimizing decision trees is mainly focused on inducing good
decision trees with high accuracy from given fixed data. However, recently a few researchers

have considered optimizing the tree through instance selection. In particular, Chauchat and
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Rakotomalala (2001) proposed a sampling strategy to build decision trees from a very large
database with many continuous attributes by determining the sufficient sample size to obtain
a decision tree as efficient as that built using all of the data. Yoon et al. (2001) employed
tree-based sampling for incremental classification. In their method, the class distribution is
represented by the weighted samples, which are extracted from the nodes of intermediate
decision trees using a clustering technique. An intermediate classifier is built only on the
incremental portion of the data. This approach is independent of data distribution and can be
applied to large datasets. Cano et al. (2004) applied stratified CHC to the original training
dataset and analyzed the selected training sets quality by C4.5 trees from the precision and
interpretability perspectives. However, this work did not consider the size of the trees, which
as we have noted before is an important factor to measure the interpretability of the tree.
Moreover, it used the entire training dataset in the algorithm, which leads to the long
processing time and may make it difficult to apply this approach to very large datasets. On
the other hand, Endou and Zhao (2002) divided the training data into several subsets and then
used a GA to evolve a small dataset that can cover the domain knowledge with reasonable
accuracy. From this dataset, a small but good decision tree can be designed. While this
method increases the efficiency of the algorithm, a key limitation is quite similar to the
previous research, that is, by only pursuing the accuracy of the decision trees it does not
control the growth of the trees. Therefore, during the search process the tree may become

overly deep and complex, even though it has rather high accuracy. Another problem is that
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Endou and Zhao’s algorithm tries to find the best subset, but sometimes this is not possible,
so this approach is only valid for redundant datasets, which limits its applications.

In our research, the goal is to optimize decision trees based on instance selection, but
with the main objective of determining how such optimization can be applied to design small,
more interpretable and high-quality decision trees. At the same time we expect that effective
instance selection will increase the ability of a decision tree induction algorithm to deal with
very large amounts of data. The methodology utilizes a genetic algorithm (GA) approach,
which is similar to previous work in this area, but we also introduce new formulations for

representing the solutions, defining the fitness function and choosing the various outputs.

1.2 Hypotheses

We will use the following notation in stating the hypotheses of this thesis:

T entire dataset
S instance subset of 7'
|S| size of §, i.e., number of instances in subset S

v (S) decision tree based on S

(i) number of instances on leaf node i

[(w(S)) number of the leaf nodes in v (S)

R(y(S)) Average Leaf Ratio (ALR) - average number of instances classified in leaf nodes

e(y(S)) estimated error rate of decision tree
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Hypothesis 1

GA-based instance selection will produce smaller and more interpretable

decision trees while maintaining an acceptable level of accuracy.
Since interpretability is a major issue in the use of decision trees, the size of the decision
trees must be controlled, and to improve interpretability it may be necessary to reduce the
tree sizes. We define improvements of instance selection as a reduction in the size of the
decision tree, which is measured by the number of the nodes in the decision tree. Reductions
in size should result in decision trees that are more easily interpreted, while maintaining
adequate prediction accuracy. To formulate this problem mathematically, we let
T =1{X,,X,,...,X, } be a training dataset of n instances, and the objective is to select the
smallest subset S < 7' such that the tree v (S) induced on this subset has the smallest tree
size while at the same time maintains good accuracy. Therefore, generally speaking, instance
selection can be formulated as a nonlinear integer programming multi-objective optimization

problem. The decision variables determine which instances are selected

X =

1

1 if stance i is selected
0 otherwise

and the optimization problem then becomes:

min  size(y (S)) and le.
st 1-eyS) 21—y D]x(-¢) 4)
x;,=0,1

where é(y) is the estimate of the error rate for the decision tree v , so [1-e(y) ] will be the

estimated accuracy of the decision tree, and & is a parameter related to error tolerance, i.e.
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we could set & =5~10%. In order to solve this optimization problem, we have considered

several different approaches as illustrated in Figure 1:

Exact optimum
method

Branch and Bound

Hard to obtain tight bounds,
time consuming

Greedy heuristic
method

Random Mutation Hill
Climbing (Rmhc)

Rmhc(p): Good solution, but
high computation cost
Rmhc(s): Acceptable solution,
fast, but not as good as GA

Metaheuristic
method

Genetic Algorithm

Good heuristic solution, fast

Simple construction
heuristic

Subset-based Instance
Selection (SIS)

Very fast, but the solution is
worse than GA

Figure 1 Different approaches for instance selection

As mentioned above, instance selection is a multi-objective non-linear integer programming

problem. Given that we want to minimize the size of instance subset as well as the size of the

decision tree, traditional integer programming methods such as branch and bound are not

suitable for this problem. This is due to the large number of possible branches (2") and more

importantly, the inability to find a good relaxed problem because of the complexity of the

decision trees. The implication is that it is difficult to acquire tight bounds, making

branch-and-bound almost infeasible for relatively large datasets. In order to reduce the search

space, we have developed a 2-phase Rmhc method (described in Chapter 3). The point-based

Rmhc method is able to select a relatively best instance subset in finite steps but it is still

quite time consuming. The subset-based Rmhc method greatly increases the speed but the
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solution quality is worse than GA. It will be shown in Chapter 3 that a GA-based instance
selection produce similar results as the point-based Rmhc method with much less
computation cost (i.e., it is more efficient). On the other hand, simple construction heuristic
is quite fast, but it is not as good as GA, especially for some large datasets, the tree’s size will
be much larger than that from GA approach.

Finally, GA-based instance selection turns out to be the best option in balancing the
quality of the solutions and the speed of the algorithm. This is shown through the application
of GA-based instance selection to several test problems, and a comparison of the original
decision tree developed on the entire dataset with the tree from the selected instances. Using
this approach, we have shown in Chapter 2 that for C4.5 decision trees, the size of the tree
can be significantly reduced using instance selection, while the predictive accuracy is as

good.

Hypothesis 2

Optimization-based instance selection prevents overfitting in decision tree
learning.
Overfitting is possible even when the training data are noise-free, especially when small
numbers of instances are associated with leaf nodes. In this case, it is quite possible for
coincidental regularities to occur (Mitchell, 1997), in which some attribute happens to

partition the instances very well, despite being unrelated to the actual class attribute.
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Whenever such coincidental regularities exist, there is a risk of overfitting. We introduce a

measure average leaf ratio (ALR) R(y(S)) that measures the average fraction of instances

per leaf node, which is given by

HUZCY)) l”(i)
=R

Ry (S)) = 1w (S)

x100% . ()

It is expected that the decision tree after instance selection should have higher value of
R(y(S))than the decision tree based on original training data. With more number of
instances associated with leaf nodes, the tree will stop growing earlier before it reaches the
point where it perfectly classifies the training data, so there will be less chance for the
occurring of overfitting. Another approach to avoiding overfitting in decision tree learning is
to allow the tree to overfit the data, and then post-prune the tree. In Chapter 4, we will
compare instance selection with several post-pruning techniques to show that instance

selection can be used as an effective alternative for decision tree pruning.

Hypothesis 3

Number of instances, number of class values, and number of attributes will affect

the performance of instance selection for improving decision tree.
Datasets for data mining applications are usually large and may involve several million
instances. Furthermore, each instance typically consists of ten to hundreds attributes. Using
large datasets usually improves the accuracy of the classifier, but the enormity and

complexity of the data involved in these applications makes the classification task
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computationally intensive. Decision trees, for example, require several passes over the entire
dataset and efficient computation using this method requires all the instances be stored in the
main memory. This limitation and the interpretability issue generally limit decision trees to
classifying small datasets.

Therefore, empirical studies were performed to compare decision trees with and without
instance selection. Parameters including number of instances, number of class values, and
number of attributes influence were studied to determine their effect(s) on the performance of
the algorithm in terms of computation cost, the decision tree’s size, the classification
accuracy and the average leaf ratio (ALR).

The remainder of the dissertation is organized as follows. In Chapter 2, we formulate the
optimal instance selection problem, propose a genetic algorithm for finding heuristic
solutions to this problem, and determine guidelines for how the GA approach should be
implemented and when this approach works best. In Chapter 3, we compare the results
between different instance selection approaches to demonstrate the effectiveness of
GA-based instance selection. In Chapter 4, we illustrate how instance selection can be
applied to decision tree pruning and provide a case study to show the benefits from instance
selection. Finally, Chapter 5 contains some concluding remarks and future research

directions.
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CHAPTER 2. METAHEURISTIC INSTANCE SELECTION

2.1 Metaheuristic Method and Genetic Algorithm

A metaheuristic is a heuristic method for solving a very general class of computational
problems by combining user given black-box procedures--usually heuristics themselves--in
an efficient way (Blum and Roli, 2003). Metaheuristics are commonly used to solve
combinatorial optimization problems. The goal of combinatorial optimization is to find a set
of discrete values for a set of decision variables that maximize (or minimize) an objective
function.

Metaheuristics track the current best solution and the current values for the set of decision
variables (i.e., the current state). A new set of values are generated by an interchange or
mutator procedure. Such interchanges are often probabilistic procedures. The set of new
values produced by the mutator are in the neighborhood of the current set. More
sophisticated metaheuristics maintain more than one set of values. Criteria are defined to
select which sets will be retained and which sets will be discarded. New sets can be
generated by some combination or crossover of two or more sets. Since the set of candidates
is usually very large, metaheuristics are usually constrained by the maximum number of
iterations. When unconstrained, some exact metaheuristics will eventually check all

candidates, and use heuristic methods only to choose the order of enumeration. Therefore,
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they will always find the true optimum, if the constraint is large enough. Other metaheuristics
give only a weaker probabilistic guarantee, namely that, as the number of iterations
approaches infinity, the probability of checking every candidate tends to be one.

Most of the success of metaheuristic methods is due to their ability to exploit the
information accumulated about an initially unknown search space (Blum and Roli, 2003).
This is their key feature, particularly in large, complex, and poorly understood search spaces,
where classical search tools (enumerative, heuristic, etc.) are inappropriate. In such cases,
they offer a valid approach to problems requiring efficient and effective search techniques.
Some well-known metaheuristics include Genetic Algorithm (Holland, 1975), Simulated
Annealing (Kirkpatrick et al., 1983), and Tabu Search (Glover and Laguna, 1997).

Genetic algorithms are a particular class of evolutionary algorithms that use techniques
inspired by evolutionary biology such as inheritance, mutation, natural selection, and
recombination (or crossover) (Goldberg, 1989). Key characteristics of GA include:
® GA searches from a population of points, not a single point.
® GA uses a fitness function (i.e., objective function), not derivatives or other auxiliary

knowledge.
® GA uses probabilistic transition rules, not deterministic rules.
® GA is robust with respect to local minima or maxima.
® GA works well on mixed discrete/continuous problems.

® (A is stochastic and easy to implement.
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A population of abstract representations (chromosomes) represents a solution to the
problem. Usually, solutions are represented in binary as a sequence of Os and 1s, but different
encodings are also possible for specific applications. The evolution starts from a population
of completely random individuals (i.e, the first generation). Each iteration represents a new
generation in which the fitness of the whole population is evaluated; multiple individuals are
randomly selected from the current population (based on their fitness) and modified (mutated
or recombined) to form a new population, which becomes the next generation. A

pseudo-code genetic algorithm is shown below (Goldberg, 1989):

CHOOSE INITIAL POPULATION

REPEAT
Evaluate the individual fitnesses of a certain proportion of the population
Select pairs of best-ranking individuals to reproduce

Breed new generation through crossover and mutation

UNTIL TERMINATING CONDITION

2.2 Genetic Algorithm for Instance Selection

Our methodology uses GA similar to previous work in this area. The GA greatly reduces the
search space in that it is only carried out on the “populations” instead of on individual
instance. The objective function in (4) was modified to include the decision tree size and

estimated error rate.
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2.2.1 Fitness Function

The definition of our fitness function incorporates some ideas from the concept of the
information entropy and minimum description length principle (MDL, Rissanen 1985).
Originally, information entropy proposed by Shannon (1948) can be derived by calculating
the mathematical expectation of the amount of information contained in a digit from the
information source. Shannon’s entropy measure came to be taken as a measure of the
uncertainty about the realization of a random variable. It thus served as a proxy capturing the
concept of information contained in a message as opposed to the portion of the message that
is strictly determined (hence predictable) by inherent structures. There is a longstanding
tradition in science that, given a choice of theories that are equally good the simplest theory
should be chosen, which is known as Occam’s Razor (Ariew, 1976), and the minimum
description length principle takes the stance that the best theory for a body of data is one that
minimizes the size of the theory plus the amount of information necessary to specify the
exceptions relative to the theory.

In data mining, theory corresponds to the predictive model, so the size of the theory is the
size of the data mining model and the amount of information for exceptions can be roughly
measured as the estimated error rates of the data mining model. Therefore, we define the

fitness function, f{S), in the form of entropy giving

£(5) =—log(2(w(3»j—alog[@j, a1 ©)
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Here K is an upper bound on the size of the tree (b is a constant, i.e. b=5)

K = max{treesize in current population} + b (7)
and we assign higher weight a to the size factor since our main goal is to create smaller and
more easily interpreted decision trees. The optimization problem is thus to find the subset

S,., < T that maximizes (6) above. Our proposed methodology is to use a GA

best

~

implementation to find a heuristic solution, S,,, , to this problem.

best >

To evaluate the performance of an instance subset S using (6), the error rate, or

equivalently the accuracy, of y(S)must be estimated. We do this using a bootstrapping

approach. Before the optimization starts, the original dataset is randomly divided into two

separate training data 7~ and test data D", then T  is sampled with replacement n :|T *|
times to generate the training set 7, and the instances that are not selected form an

independent test set D =7 \T . The chance that a particular instances will not be picked for

the training set 7 is [l—lj and lim[l—lj =e¢ ', where e = 2.7183, the base of natural
n n—»0 n

logarithms. Thus for a reasonably large dataset [1 —lj ~e"' =0.368 and the test set will
n

contain about 36.8% of the instances, and the training set will contain about 63.2% of them,

so the estimated error rate is given by (Efron, 1979)

&y (5))=0.632-¢,(y (5))+0.368- ¢, (w(5)), ®)
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where e, (l//(S )) is the actual error when the tree w (S) is applied to the test data D, and
e, (l// (S )) is the error when it is applied to the training data 7. Note that we have two
different test datasets here, D and D. D is used to evaluate the decision trees generated

within the GA algorithm, while D" is used to validate the decision tree for the final GA

~

solution, S, , . This prevents possible bias from applying the decision trees to the same test

best *

set.
2.2.2 Solution Representation

The solution space must be defined in terms of what are called the chromosomes, which in
most GA applications are binary strings. Here we take a slightly different approach and let g;
denote the position of the ith training instance in the training dataset 7. The chromosomal
unit of each subset is defined as a vector C = [gl, - SUCTITER , g N] of integers, where N is the
number of training instances in a subset and represents the length of the chromosomal unit.
Here the sequence of g; does not have any influence on the GA process.

Note that one reason for not using the binary representation is that each instance would
have a placeholder in the string, creating an intractable representation for large datasets.
Another reason for why we do not use binary string is that the instances in each subset may
be changeable (this is highly likely because of the GA operations). Therefore, with the use of

integer chromosomes, each element in the integer vector chromosome can be easily replaced
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by a specific training instance, and it is more natural and easier to implement the evolution

process.
2.2.3 GA Operations

The GA search starts with an initial population P, = {Cfo),Céo),...,Cﬁf)} of chromosomes
that is selected as follows. Given n = |T | instances we divide 7 into M subsets by sampling
the training set N times without replacement to generate C”, where N = \_n/ M J, and then
repeating this process M times to generate the remaining subsets. Starting with this initial
population, the usual GA operations of selection, crossover, and mutation are applied to

improve the population. These operations are described as follows.

The most typical type of selection technique is called proportionate selection (e.g.
roulette wheel selection) which is realized as a natural selection and can be defined as below

(Davis 1991): In the kth generation, the individual S(C') is selected by some probability:

_IS€)
OxMax{ f(S(CiNI T ©)

P[S(C])]
where S(C[(]'.‘]))z {X[ ie C[(_/'.‘])} is the set of all instances in the subset (chromosome) C|},
j=1,2,...,M and Q is a constant, so the individual with higher fitness value is more likely to
be chosen and (1-c¢)M individuals are selected into the next generation, where ¢ is the
crossover rate. Another type of selection is ranking selection, that is, all individuals of

current population are ranked according to their fitness values and the fittest ones will be

selected into the next generation. The comparison between these two selection techniques is
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listed in Appendix E (Table AI18 and A19). It can be seen that roulette wheel selection
generally obtains much smaller tree size. The reason is that by adding some random factors
to selection, GA will have wider searching space and thus it may find better instances.
Crossover is an exploitation technique in which two chromosomes in a population
exchange a portion of their genes. This allows variations to be introduced to the new
population and a heuristic search for a new localized state space. There are different
techniques for crossover. The simplest technique is one-point crossover (Davis 1991) that
randomly picks a crossover point and swaps the segments to the right of this point between
the two chromosomes. Two-point crossover is commonly used to allow a wider range of
combinations. This technique selects two crossover points and the segment between the two
crossover points in a chromosome is then swapped with the segment with the same position
in the other mating chromosome. Another technique that allows all combinations of
crossover is uniform crossover (Davis 1991). Individual bits in the chromosome are
compared between two parents, then the bits are swapped with a fixed probability, typically

0.5. Comparing the three crossover techniques, one-point crossover has (N —1) possible

N-2
crossover combinations (where N is the gene length), two-point crossover has Zi possible
i=1

combinations, and uniform crossover has 2" possible combinations (Lam, 1994).
In the past several years, GA researchers have preferred either two-point or uniform

crossover. Syswerda (1989) demonstrated that a uniform crossover outperforms a one-point
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crossover and two-point crossover in maintaining population diversity to search for the
global optimum. Spears and DeJong (1991) observed that two-point crossover converges
more quickly, but to a lower plateau than uniform crossover which converges more slowly to
a better solution. Their results show that uniform crossover is better than two-point crossover
for smaller values of the gene length N and the population size M, but they note just the
opposite effect as N and M increase. This suggests a way to understand the role of
multi-point crossover. With smaller populations and shorter gene length, more disruptive
crossover, such as uniform or n-point (n>>2) may yield better results because they help
overcome the limited information capacity of smaller populations and shorter gene length
and the tendency for more homogeneity. However, with larger populations and longer gene
length, less disruptive crossover operators (two-point crossover) are more likely to work
better, as suggested by the theoretical analysis (Levine, 1994). As we are dealing with large
datasets in instance selection, the gene length tends to be large, so two-point crossover seems
a good choice. In Appendix D (Table Al5, A16 and Al7), we compare the results with
different crossover operations, and it can be seen that one-point crossover works well for
multi-class problems when only the best subset is chosen, two-point crossover and uniform
crossover are pretty close, but two-point crossover tends to obtain the decision trees with
slightly higher accuracies and relatively small tree sizes. So we choose two-point crossover.
The proportion of the number of chromosomes involved in crossover operation over the

total number of chromosomes is defined as the crossover rate. The crossover rate is problem
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dependent and there is no specific method to determine it. Studies of crossover rate suggest
that a higher crossover rate yields more chances for chromosomes with better fitness to
crossover more than once and hence faster convergence. Further studies show a decreasing
crossover rate as the population size increases. Some results have suggested M=50~100 and
¢=0.6 (DelJong and Spears, 1991), and M=80 and ¢=0.45 (Grefenstette, 1986) as good values
for offline performance. We tried three different crossover rates (0.6, 0.7 and 0.8) and the

results are listed in Appendix A (Table AS, A6, A7 and AS).

Parents Offspring
Ti:[pl’ppizapippim """ apl.prpl.Nfzapiprpl’N] ]';;[pjl,pjz,p«i3,p«i4, ...... ,p«fN73,pl'N72,
[/ J J Joai. J J J J i i . . . i
Tl[p LP 2, P 3,P" 4, PP N3, PUN-2, PUN-L P N] Tj:[pjlapjzapIS’pu’ """ ’plN73’pAIN*21

Crossover Points
(@)

Parents Offspring
T, :[ pi\. piy, Pis, Pl oo, piy] :> T, :[ piys Piss Piy, P'igs -, Diy]

Mutation Point

(b)
Figure 2 Operations of the genetic algorithm: (a) crossover (b) mutation

In summarization, the crossover operator in our algorithm probabilistically selects cM/2

pairs from P, chooses two random points and then swaps the parts between crossover points
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among parent chromosomes (see Figure 2(a)). Meanwhile the instances corresponding to the
position numbers will be exchanged between these two subsets.

Nevertheless, using crossover alone is not an effective search for a global optimum.
Particularly, when the population converges, every chromosome in the population is similar
to every other chromosome, and hence crossover becomes less productive. So mutation is
introduced to complement the weakness of crossover. Mutation is an exploration technique
that is used to introduce new values into a chromosome by randomly flipping selected bits.
Young (1990) demonstrated that combining mutation and crossover significantly
outperformed and more robust than using either mutation or crossover alone. In our
algorithm, if the element g; in the chromosomal unit is chosen to be mutated (the probability
of mutation is determined by the mutation rate m), a new random number g will be
generated uniformly from {1,2,...,|7]} and then replaced for g; (see Figure 2(b)). Furthermore,
the instance in position g; will be replaced by the new instance in position g;’. Note that the
mutation rate should be kept very low (usually about 0.001) as a high mutation rate will
destroy fit strings and degenerate the GA algorithm into a random walk. But Tate and Smith
(1993) argue that the optimal mutation rates depend strongly on the choice of encoding, and
problems requiring non-binary encoding may benefit from mutation rates much higher than
those generally used with binary encodings. Our algorithm uses integer encoding, so we tried
three different mutation rates with relatively higher values (0.01, 0.05 and 0.09) and the

results are also listed in Appendix A (Table AS, A6, A7 and AS8).
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2.2.4 Heuristic Solutions

The GA operations are repeated for a given number of G generations, resulting in a final
population P, = {CI(G) ,C\9,...,C\Y }, which is ranked according to the fitness as in (6).
fls(ciy )= slslcy)=.. slslci) o

The heuristic solution S, to the best instance subset is then found from this final

best
population. One approach is to simply let it correspond to all of the instances that are
contained in the top chromosome, that is,

Ses) _ [ .+ _ (G

St —x, ie O}, (11)

But this may miss some good instances and we therefore also consider selecting all instances

that are contained in at least one of the top y% of subsets (chromosomes), that is,

SO =1x, ie| )9, wherem = M-l (12)
< 100

In the numerical experiments that follow we will consider y {25,50,75}.

2.3 Experiment Results
2.3.1 Experiment Setups

The basic premise of this research is that instance selection can be used to improve decision
tree induction and that the genetic algorithm methodology presented in Section 2.2 is
effective in achieving such improvements. Furthermore, we define improvements as

reduction in the size of the decision tree, which should result in decision trees that are more
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easily interpreted, while maintaining adequate prediction accuracy. In order to validate this
premise, some numerical experiments were conducted involving five challenging test
problems, four of which are taken from the Machine Learning Repository of the University
of California at Irvine, and a scheduling problem adopted from Li and Olafsson (2004). The
characteristics of these five datasets are described in Table 2. Also the histograms of these

five datasets before and after instance selection are shown in Appendix F (Figure A1~A12).

Table 2 Test datasets

Dataset  Instances Attributes Classes Description

) This dataset is meant to discover the scheduling rules, and
Scheduling 7140 11 2 ) ] i
represent the result that enables its use for job scheduling.
) The objective is to predict whether a patient has thyroid
Sickness 3772 30 2 .
disease.
Splice junctions are points on a DNA sequence at which
superfluous DNA is removed during the process of protein
creation in higher organisms. The problem posed in this
Splice 3190 62 3 dataset is to recognize, given a sequence of DNA, the
boundaries between exons (the parts of the DNA sequence
retained after splicing) and introns (the parts of the DNA
sequence that are spliced out).
The instances were drawn randomly from a database of 7
Segment 2310 20 7 outdoor images. The images were hand-segmented to create a
classification. Each instance is a 3x3 region for every pixel.
The objective is to identify each of a large number of
black-and-white rectangular pixel displays as one of the 26
capital letters in the English alphabet. The character images
were based on 20 different fonts and each letter within these
Letter 20000 17 26 .
20 fonts was randomly distorted to produce a file of
20,000 unique stimuli. Each stimulus was converted into 16
primitive numerical attributes which were then scaled to fit

into a range of integer values from 0 through 15.
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All of the data mining algorithms, including the C4.5 decision tree induction algorithm,
were implemented in the WEKA environment (Witten and Frank, 2000). The C4.5 algorithm
was run using its default parameter settings in WEKA. It is of special interest to note that
these settings include using the C4.5 pessimistic pruning with a subtree raising operation.
Such pruning is essential to the construction of high quality decision trees. As an example,
applying the C4.5 algorithm with the same parameter settings but without pruning to the
“Splice” dataset results in a tree of size 3707 (number of nodes) with an estimated accuracy
of 91.9% (estimated using 10-fold cross-validation). Adding pruning as described above
results in a tree of size 229 with an estimated accuracy of 94.1%, that is, the size of the tree is
reduced by an order of magnitude while the accuracy is increased. Similar results were found
for the other datasets.

For the genetic algorithm settings the number of generations is fixed as G = 20, the
crossover rate is ¢ = 0.6, the mutation rate is m = 0.09, the constant in selection operation is
0=2.5, and the weight for fitness function is a=6. These parameter settings were selected as
they appear to perform well for this task as shown in Appendix A (Table A1~A12). The
number of subsets in each generation is allowed to vary M e {5,10,15}. The original dataset
is randomly divided into one training set 7' " and one independent test set D", for some smaller
datasets (n<3000), approximately 1/4 instances are randomly chosen in test set and for larger
datasets, 1/3 instances are chosen. This holdout procedure for creating independent test set is

commonly used in evaluating the classification.
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Instance selection is applied to the training set 7". The original decision tree from the
entire data and the decision tree from the selected instances are both evaluated using the test
data D". For each experimental setting, ten replications are made and both the average and

standard error are reported. The whole process of the experiment is illustrated in Figure 3.

Evaluation
L TsraitnTirlg Test Set D Subset T1 »  Tree: » Fitness Function f{iree,)
€
Original Generate random )
Drltglgat Bootstrap samples
ata >¢
o Subset j ) c .
Training » Treem » Fitness Function f{tree.)
Test Set Set T Ty
D* € 1
Evaluation GA opergtlons
A e Sclection -
- _ Max o Crossover
Output decision Concrafion e Mutation
T:* 2% ... Tu* » o Individual subset with best fitness

Top 25% subsets in final generation

» o Top 50% subsets in final generation

| —————— » o Top 75% subsets in final generation

Figure 3 Design of the experiment on GA-based instance selection

2.3.2 Effectiveness of GA-based Instance Selection

We start with only selecting the best instance subset at the end of the GA run, that is,
equation (11) is used to select the heuristic solution S, , to the instance selection problem.

Table 3 compares the original decision trees from the entire data with the decision trees from

the selected instances when the number of subsets is set to the average number (M=10).
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Table 3 Results for best subset

Dataset

With Instance Selection

Original Avg. S.E. Change
Scheduling Accuracy  99.6 96.3 0.6 3.3%
Treesize  69.0 86 1.7 87.5%

ALR 2.9 22.6 3.5 679.3%
Splice ~ Accuracy 94.1 60.3 11.6 359%
Treesize 229.0 144 165 93.7%

ALR 0.7 65.0 50.0 9185.7%
Segment Accuracy  96.9 884 1.2 8.8%
Treesize  77.0 170 1.4 77.9%

ALR 2.3 11.8 0.8 413.0%
Letter =~ Accuracy 88.0 624 25 29.1%
Tree size 2451.0 302.2 22.6 87.7%

ALR 0.1 0.7 0.1 600.0%
Sick Accuracy  98.8 953 1.2 3.5%
Treesize  61.0 3.8. 24 93.7%

ALR 4.8 61.2 354 1175.0%

We observe that the reduction in the size of the decision tree ranges from 77.9% for the

“Segment” dataset to 93.7% for the “Splice” dataset. Substantial reductions in the size of the

decision tree are therefore obtained for all of the datasets. Meanwhile the reduction in

accuracy is less than 10% for three of the five datasets. For two datasets the accuracy loss is

clearly unacceptable (“Letter” dataset and “Splice” dataset), for one dataset the loss may be

considered marginal (“Segment” datasets), and for two datasets the loss is relatively minor

(“Scheduling” and “Sick” datasets). We note that the significant reduction in size of the

decision trees is in addition to the reduction already achieved through pruning the tree (e.g.,

for the “Splice” dataset from 3707 for an unpruned tree, to 229 for a pruned tree and an

average of 14.4 for a pruned tree with instance selection).
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Varying certain key parameters of the GA algorithm may be expected to affect the

performance of the approach, and in Table 4 the results from varying the number of subsets

M €{5,10,15} are reported.

Table 4 Results when number of subsets (M) is varied

Dataset M=5 M=10 M=15
Avg. SE. Avg. S.E. Avg. S.E.
Scheduling Accuracy 974 0.6 963 0.6 943 0.7
Treesize 174 23 86 1.7 38 24
ALR 123 1.8 22,6 35 599 350
Splice  Accuracy 829 3.2 603 11.6 529 1.6
Treesize 66.8 7.4 144 165 1.0 1.8
ALR 2.1 02 650 50.0 93.1 2.0
Segment Accuracy 92.6 1.1 884 12 828 33
Treesize 222 2.0 17.0 14 134 1.0
ALR 95 09 11.8 0.8 144 0.7
Letter ~ Accuracy 71.1 3.7 624 25 548 1.7
Tree size 507.8 73.2 302.2 22.6 2106 7.9
ALR 05 01 07 01 1.0 0.1
Sick Accuracy 97.7 09 953 12 942 2.1
Treesize 6.6 08 38 24 22 1.2
ALR 293 3.6 612 354 735 263

In order to find the changing trends of accuracy, tree size and ALR with different

number of subsets M, we conducted a set of statistical two sample #-tests as shown in

Appendix C (Table A14). The two-sample #-test (Snedecor and Cochran, 1989) is applied in

testing the hypothesis concerning differences between the means of two populations, that is,

we want to test the null hypothesisu, —u, =6 , whered is a given constant, against one of the

alternatives u, —u, #6, u,—u, >0 or u, —u, <6. Suppose that we are dealing with

independent random samples of size m and n from two normal populations and m and » are

small (m<30 and n<30) with unknown variances o, # o, , we have:
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2 2\?
S o)
—x. =5 m n
t:’clzL2 and v:( T T (13)
s s’ mf s, /n)
m n m—1 n—1

where x_1 and)c_2 are the means of the two samples and s; and s, are the standard deviations.
This expression for ¢ is a value of a random variable having the #-distribution with v degrees
of freedom. Thus, the appropriate critical regions of size a for testing the null hypothesis

u, —u, =0 against the alternatives uw, —u, #6, u,—u, >0 or u, —u, <6 under the

t

given assumptions are, respectively, |t| > ¢, ,,,t =1, ,,and 1 <~ .

a,y?

It can be quickly noted that as a rule from the statistical significance results in Appendix
C (Table Al14) that increasing M results in smaller trees that also have lower accuracy and
higher ALR. This is quite intuitive. If the original training data is divided into more subsets,
the number of instances in each subset will decrease, and with less training instances the
decision trees will tend to be smaller but less accurate and the average leaf ratio will be larger.
The best value of M appears to be application dependent. For the “Scheduling” and “Sick”
datasets the smallest decision trees are obtained at M = 15 with only a minimal degradation in
accuracy. For the “Splice” and “Segment” datasets, however, using M=5 results in
significantly smaller trees on the average with relatively little loss in accuracy, while
increasing M leads to substantial degradation in accuracy for more marginal reduction in the
size of the tree. Another factor in the selection of M is the computation time, which will be

discussed next.
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The computational overhead of the instance selection is an important measure for the

performance of our approach. The computation time in seconds is shown in Table 5 as a

function of the number of subsets used (M) and the number of GA generations (G). In order

to view the trends more intuitively, the computation time in seconds is also shown in Figure

4 and Figure 5 for four datasets except “letter”” data because of the scales of the values.

Table 5 Calculation time with different M and G

Calculation time

Calculation time

Dataset M
(G=20) (M=10)
5 29.3 sec 20 47.9 sec
Scheduling 10 47.9 sec 30 67.4 sec
15 72.3 sec 40 85.8 sec
5 53.3 sec 20 55.7 sec
Splice 10 55.7 sec 30 65.0 sec
15 72.7 sec 40 74.0 sec
5 25.3 sec 20 34.4 sec
Segment 10 34.4 sec 30 48.1 sec
15 46.9 sec 40 64.6 sec
5 215.5 sec 20 329.0 sec
Letter 10 329.0 sec 30 641.8 sec
15 541.3 sec 40 974.4 sec
5 24.9 sec 20 37.8 sec
Sick 10 37.8 sec 30 53.8 sec
15 54.6 sec 40 71.1 sec

For scheduling data, as an example, the time it takes to solve the problem is on the scale

of approximately half of a minute to about 2 minutes, depending on the setting of M and the

number of GA generations (G).
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Figure 4 Computation time with different number of generations (G)
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As expected, the computation time increases in both variables as shown in Figure 4 and 5,
with a linear growth in the number of generations G and an apparently faster growth in the
number of subsets M. This is intuitive, since more subsets imply larger space for the GA
algorithm to explore, and hence it can be expected that this is one of the main factors
determining the computation time. In particular, the computation time is quite similar for M =
5 and M = 10, but if M = 15, the computation time will increase obviously, especially for the
larger dataset. Therefore, it is recommended to choose M as relatively small, e.g. M < 10. In
our following experiments, M is set as 10.

Another factor that will affect the final results is the part of the final GA population that
is selected to induce the final decision tree. In the results reported above we simply select the
best subset and use only this subset, that is, S, =S*” according to equation (11).
However, as noted above it might be beneficial to use instances that are included in several
of the best subsets. Table 6 shows the results for the decision trees when the instances are
varied from just the best subset to all the instances that are contained in the top y% of subsets,

thatis, S, =S0% according to equation (12), where y € {25,50,75} .

best best
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Table 6 Results when fraction of selected instances is varied
Best Top 25% Top 50% Top 75%

Avg. S.E. Avg. S.E. Avg. SE. Avg. S.E.
Scheduling Accuracy 96.3 0.6 980 05 986 04 988 04
Treesize 86 1.7 27.8 3.8 41.0 35 454 42
ALR 226 35 7.1 09 48 04 43 04
Splice  Accuracy 60.3 11.6 857 2.0 912 13 928 0.8
Treesize 14.4 165 71.8 19.0 1162 93 1462 6.7
ALR 65.0 500 19 0.5 1.1 0.1 0.9 0.0
Segment Accuracy 884 1.2 926 08 948 13 952 04
Treesize 17.0 1.4 334 33 478 23 534 4.7
ALR 11.8 08 59 06 41 02 37 03
Letter  Accuracy 624 25 739 08 802 06 823 04
Tree size 302.2 22.6 623.0 7.9 1071.2 29.7 12443 15.6
ALR 07 01 03 00 02 00 02 0.0
Sick Accuracy 953 1.2 98.0 0.7 985 05 986 04
Treesize 3.8 24 124 24 156 45 234 56
ALR 61.2 354 142 33 11.6 46 175 1.5

Dataset

The statistical significance results in Appendix C (Table A14) show that as y is increased,
the average accuracy improves but the tree size increases as well, moreover, the average ratio
drops. These results are not unexpected, as more instance are included the accuracy increases
but the size of the decision tree will also grow. Therefore, sometimes it is beneficial to use an

aggregation of subsets instead of just using the best one as the selected instance subset, that is,

~

§  —5uw

st =, in order to obtain higher accuracy. It should be noted, however, that the
number of distinct instances in these subsets is typically much less than the total size of the
subsets. This can be observed from Table 7, which show the number of distinct instance in

~

S, =S for ye{2550,75}. We also note that y = 50 seems to work well for these test
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problems, since this results in decision trees with high accuracy (that is, close to the accuracy

of the trees induced from original dataset) that are also relatively small.

Table 7 Distinct instances in the output

Fraction of Selected Instances (G=20)

Dataset M
Top 25% Top 50% Top 75%

5 857.0 1564.2 2146.6

Scheduling 10 860.1 1865.1 2368.5
15 859.5 1775.8 2492.3

5 384.0 707.5 968.6

Splice 10 381.2 837.4 1079.2
15 384.3 789.5 1103.8

5 316.7 574.2 783.5

Segment 10 314.9 683.3 873.2
15 311.8 643.6 900.3

5 2401.5 4377.0 5996.1

Letter 10 2426.2 5272.3 6735.0
15 2419.0 4978.6 6913.8

5 456.1 825.8 1126.6

Sick 10 456.3 986.2 1262.7
15 451.8 928.1 1301.5

It should be noted that while the GA optimization algorithm is always able to reduce the

size of the decision trees, the quality of the trees is very much application dependent. For

example, we note from Table 3 that for the “Scheduling” dataset it is possible to find a

decision tree using only 10% of the instances where the accuracy is almost as good as the

decision tree designed directly with all training instances, but the average size of the tree is

8.6 versus 69.0 nodes. Similarly, the approach performs very well for the “Sick™ dataset. One

characteristic that these dataset have in common is that the class attribute only takes two

values. On the other hand, our approach performs much worse for the “Letter” dataset where
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the class attribute has 26 possible values. For these problems, it is beneficial to use an

aggregation of subsets instead of just using the best one as the selected instance subset, that is,

~

S

best best

=SS0 Tt appears reasonable to speculate that more class values, more data instances

are needed to induce good decision trees. We will provide further discussions in 2.3.4.

It is interesting to explore further on the average leaf ratio, since this measure provides

some insights of the benefits from instance selection. The values of ALR before and after

instance selection are compared in Table 8.

Table 8 Results on ALR before/after instance selection

Original data Instance selection
Dataset
4 utput verage v ange
|71 Ry (T))  Outp A R(y(S))  Chang
Best 0.7 600.0%
y=25 0.3 200.0%
Letter 13333 0.1
y=50 0.2 100.0%
y=75 0.2 100.0%
Best 65.0 9185.8%
] y=25 1.9 171.4%
Splice 2126 0.7
y=50 1.1 57.1%
y=15 0.9 28.6%
Best 11.8 413.0%
y=25 59 156.5%
Segment 1732 2.3
»=50 4.1 78.2%
y=15 3.7 60.9%
Best 22.6 679.3%
] y=25 7.1 144.8%
Scheduling 4760 2.9
y=50 4.8 65.5%
y=75 43 48.3%
Best 61.2 1175.0%
] y=25 14.2 195.8%
Sick 2514 4.8
y=50 11.6 141.7%
y=75 7.5 56.3%
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From Table 8, it can be seen that the greatest improvement in Average Leaf Ratio occurs
in the best subset, the change is from 413.0% for “Segment” data to 9185.8% for “Splice”
data. However, with more instances included in the final output, the improvement in ALR
drops quickly, when y=75%, the change is less than 100%. Therefore, with more instances in
the output, there will be less benefit in ALR from instance selection. Furthermore, as noted
above, for the multi-class problems such as “Letter” and “Splice” data, we need to use the
aggregation of the subsets to obtain good accuracy, so for these problems, even though
instance selection is still able to reduce the tree’s size and achieve acceptable accuracy, it

does not act as well as the two-class problems for which the best subset is good enough.

2.3.3 GA-Based Instance Selection for Large Datasets

The application of instance selection to large datasets is essential in evaluating the value of
this approach. To investigate the performance of the genetic algorithm for optimal instance
selection in different scenarios (i.e., different number of attributes and different number of
instances), we will for the purpose of limiting repetition focus only on the “Letter” and
“Scheduling” problem. We note, however, that similar observations hold for the other test
problems. Here the most important measure is computation cost since one concern is that the

GA process may be slow in dealing with large datasets.

Figure 6 shows the computation time with different number of attributes randomly

selected from the “Letter” data and the number of attributes is varied from 5 to 17.
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Meanwhile, for each setting, we tested different number of instances. For example, when the

number of attributes is 5, the number of randomly selected instances is varied from 6000 to

18,000. As expected, the computation time grows with more attributes. And the growth of

computation time with different number of attributes is approximately linear when the

number of instances is less than 12,000, but as the number of instance reaches 18,000, the

growth of computation time is much faster.

Figure 6 Computation time with different number of attributes
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In order to verify the performance of our approach under some extreme situation, we use

“Scheduling” data as an example. An attractive property of using the “Scheduling” dataset

for this test of computation time is that we are able to generate any number of instances for

this dataset while maintaining the structure. Figure 7 shows the effect increasing the number

of the instances has on the computation time. It can be seen that increasing the number of
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instances will increase the computation time, but this increase still appears to occur at a linear
rate with the value of R* close to 1. So our approach is capable of handling large datasets

with acceptable computation cost.

Figure 7 Computation time with different number of instances
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2.3.4 The Influence of the Instance Entropy on Instance Selection

From previous sections, we know that the number of class values has close relationship with
the performance of instance selection. In this section, we will explore this further to
investigate what is the major factor that influences the instance selection. Here we will use

the measure of instance entropy Entropy(S) which is defined as:

C

Entropy(S) = Z—pi log, p, (14)

o HLEN ZI‘JI_EISI
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where ¢ is the number of classes and p; is the proportion of dataset S classified as class i.
Note that the entropy is O if all members of S belong to the same class and the entropy is
maximum when all classes are equally likely. Figure 8 shows the form of the entropy

function relative to a boolean classification (¢=2), as the proportion of one class varies

between 0 and 1.

Figure 8 The entropy function relative to a boolean classification
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One interpretation of entropy from information theory is that it specifies the minimum
number of bits of information needed to encode the classification of an arbitrary member of S
(Mitchell, 1997). So Entropy(S) provides a measure of impurity in the dataset S. The higher
the entropy is, the more diversity the data contains. Therefore, it is obvious that multi-class

problem will have larger entropy than two-class problem. Next we will show that with higher
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entropy, that is, with more impurity in the data, there will be less benefit from instance
selection. Here we use top 25% subsets, since the results of top 25% subsets are more stable
than those of the best subset with less deviation in ALR, accuracy and tree size. From Table
9, it can be seen that though instance selection is able to obtain high ALR improvement and
significant tree size reduction for multi-class problems, the decrease in accuracy is much
higher than two-class problems, so in order to describe more diversity in multi-class problem,

we will need more instances to induce good decision tree with acceptable accuracy.

Table 9 The influence of entropy on different datasets

Number of ALR improvement for Accuracy decrease for Tree size decrease for
Dataset Entropy
class values Top 25% subset Top 25% subset Top 25% subset
Letter 26 4.70 200.0% 16.0% 74.6%
Splice 3 1.48 174.4% 8.9% 68.6%
Segment 7 2.81 156.5% 4.4% 56.6%
Scheduling 2 0.32 144.8% 1.6% 59.7%
Sick 2 0.33 195.8% 0.8% 79.7%

Furthermore, it is interesting to investigate for a specific problem, how entropy will
influence the performance of instance selection. Here we resample the instances to get
different entropy values. The resample bias determines whether to use bias towards a uniform
class. A value of 0 leaves the class distribution as it is, while a value of 1 ensures the class
distribution is uniform in the output data. Considering that with more class values, there will
be less difference in the entropy values out of resampling, for example, the entropy of the
“Segment” dataset with seven class values is around 2.81 no matter how the resample bias is
changed, our experiments are only focused on “Sick”, “Scheduling” and “Splice” data with

no more than three class values. Table 10 and 11 list the results from different entropies.
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Table 10 The influence of entropy on two-class problem (scheduling and sick datasets)

ALR improvement for Accuracy decrease for Tree size decrease for

Top 25% subset Top 25% subset Top 25% subset

Resample Bias Entropy )
(higher is better) (lower is better) (higher is better)
Scheduling Sick Scheduling Sick Scheduling Sick

0 0.33 144.8% 195.8% 1.6% 0.8% 59.7% 79.7%
0.2 0.60 77.1% 180.4% 1.6% 1.8% 53.9% 76.7%
0.4 0.79 70.0% 178.9% 1.6% 2.1% 51.0% 74.4%
0.6 0.91 67.7% 124.4% 1.6% 2.1% 49.3% 68.8%
0.8 0.98 66.7% 102.1% 1.9% 2.4% 44.7% 67.9%
1.0 1.00 66.4% 93.8% 2.1% 2.9% 44.0% 65.6%

Table 11 The influence of entropy on multi-class problem (splice dataset)

ALR improvement for Accuracy decrease for Tree size decrease for
Resample Bias Entropy Top 25% subset Top 25% subset Top 25% subset
(higher is better) (lower is better) (higher is better)
0 1.48 174.4% 8.9% 68.6%
0.2 1.51 164.3% 8.8% 62.0%
0.4 1.55 157.1% 8.8% 61.6%
0.6 1.56 145.7% 9.0% 61.6%
0.8 1.58 104.3% 9.1% 61.3%
1.0 1.59 102.9% 9.5% 58.0%

Note that it is better to have larger increase in ALR, less decrease in accuracy, and more

reduction in tree size. It can be seen from Table 10 and 11 that with higher entropy in the

data, there will be less improvement in the average leaf ratio and less reduction in the tree

size as well as higher degradation in the classification accuracy. So generally speaking,

higher entropy in the data will lead to less benefit from instance selection.
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CHAPTER 3. HEURISTIC INSTANCE SELECTION

The goal of selecting an optimization algorithm for solving problems such as the instance
selection problem is to find algorithms with provably low computation cost and good or
optimal solution quality. However, sometimes these goals cannot be achieved simultaneously
and therefore a heuristic is proposed as an algorithm that gives up one or both of these goals.
For example, it may find pretty good solutions, but the search process is time consuming. On
the other hand, some heuristic runs reasonably fast, but it may produce bad results. For many
practical problems including instance selection problem, when finding the exact optimal
solution is impossible, heuristic algorithm may be the only way to get good solutions in a

reasonable amount of time.

3.1 Greedy Heuristic Method

A greedy heuristic method solves an optimization problem by finding locally optimal
solutions. The algorithm is called “greedy” because it always takes the best immediate, or
local, solution while finding an answer. As for our instance selection problem, using
enumeration will find the optimal solution, but it will need to run2” steps (n is the number of
instances in original dataset 7) to check all possible candidates since for each instance there
will be two choices: select it or not. For some really small datasets (#<50), it is possible to

use enumerative method, but as the number of instances increases, the computational cost
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will grow up dramatically, which makes enumeration infeasible. Also branch-and-bound

cannot be applied to this problem as discussed in Section 1.2. Therefore, greedy heuristic

method may be a good way to obtain good solution. Here we have developed a new 2-phase

Rmhc heuristic method for instance selection problem. The original Random Mutation Hill

Climbing method (Mitchell et al., 1992) contains four steps as following:

1. Choose a candidate at random. Call this “best-evaluated”.

2. Choose a locus at random to flip. If the flip leads to an equal or higher objective value,
then set “best-evaluated” to the resulting solution.

3. Go to step 2 until an optimal solution has been found or a maximum number of
evaluations has been performed.

4. Return the current value of “best-evaluated”.

Rmhc is a greedy heuristic since it always tried to find better objective value. As found by

Mitchell et al. (1992), Rmhc outperforms genetic algorithm in some difficult optimization

problems. We follow some basic ideas of Rmhc method and the main novelty of our method

is trying to decompose the original optimization problem instead of trying to obtain the

optimal solutions for the two objectives (minimizing the tree size and the instance subset size)

simultaneously. As is shown in Figure 9, in Phase I, we start with randomly selecting a

subset S from original dataset T to satisfy the accuracy constraint, that is, the decision tree

built from this subset S should have good accuracy compared with the tree built from entire

data 7. This subset is the initial feasible solution. In each following iteration, the algorithm
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interchanges an instance from S with another from 7/S. The change is accepted if it offers
smaller tree size and satisfies the accuracy constraint. Then in Phase II, we will gradually
reduce the subset’s size without deteriorating the tree’s size and accuracy. The backward

selection continues until no instance can be deleted from the current subset.

Start with $=0

y

Use random sampling to find a
feasible solution S Phase I: Forward sampling

Interchange the instances in S with those in 7/ S,
the change is maintained if it yields smaller
decision tree and it is feasible

Phase II: Backward selection

Discard the instances in S one by one,
continue until no change happens in current iteration

Figure 9 Main steps of 2-phase Rmhc

Previous research on applying Rmhc to instance selection problem normally stops after
Phase I, while our 2-phase Rmhc continues in Phase II to search for smaller instance subset to

obtain better solution. Some major steps of 2-phase Rmhc are described below:
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Phase I: Forward sampling

1) Initialization: S = &, best instance subset S, =, best tree size sy=0, initial subset size
p=0;

2) Sample without replacement to generate subset S;

3) Check the accuracy of the decision tree from subset S to verify if it is a feasible solution:
If 1-e(y(S))>[1—e(y(T)]x(1—-¢), the solution is feasible, let p =S|, S/=S, and
so=size(y(S)), go to step 4; else, go back to step 2 and acquire more samples;

4) Interchange the instances in S with those out of S one at a time: Denote /,(S)as the ith
instance in S and [7,(S7) as the jth instance in 7/S. Let [(S)=1,(S"),
i=12,...p,j=12,..,|T|-p;

5) Accept the interchange if size(y(S))<s, and l—e(y(S))=[1-e(y(T)]x (l — 8) ,
update S, =S and sp=size(w(S)), go back to step 4; else reject the interchange,

restoreS =S, go back to step 4.
Phase IlI: Backward selection
6) Discard the instances in S one by one, that is, remove [,(S) from S, i=1,2,...,p;

7) Accept the deletion if size(y(S))<s, and 1-e(y(S))2=[l—-e(y (T)]x (l — g), update

p=S|, S,=8 and so=size(y(S)), go back to step 6; else reject the deletion,

restoreS =S, go back to step 6;

8) Continue until no changes happen in current iteration, output sy and S.
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This heuristic method only searches part of the whole solution space so it does not
guarantee finding the optimum. In Phase I, it runs px(n— p) steps. In phase II, under the
best situation, that is, no instance is deleted at the first iteration, this method only needs to
run p steps. Even considering the worst situation (only one instance is discarded in each

iteration), it runs p+(p —

D+.+1= w steps. So the total search steps of 2-phase

M]

Rmhc are reduced from 2" in enumeration to [ px(n—p)+ p, px(n—p)+ 5

which converts the original NP-hard problem to a solvable polynomial problem, but it can be
expected that this 2-phase Rmhc method is only good for median datasets, since for large
datasets (#>5000), the computation cost is still too high.

In order to increase the speed of 2-phase Rmhc method, it can be modified for individual
subset instead of individual instance. For the subset-based Rmhc method, the original dataset
T is randomly divided into M subsets in Phase I, and these subsets are sampled without
replacement to generate the initial feasible solution containing P subsets. In each following
iteration, the algorithm interchanges a subset from S with another from 7/S instead of
interchanging a single instance. Similarly, the change is accepted if it offers smaller tree size

and satisfies the accuracy constraint. Then in Phase II, the backward selection continues until

no subset can be deleted. Thus the search steps of subset-based Rmhc method are

. Since the values of P and M are much smaller

[PX(M—P)+P,P><(M—P)+W}

than the values of p and #n, the modified subset-based Rmhc method should run much faster
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than the original point-based Rmhc method. We will compare these two approaches in

Section 3.3.

3.2 Simple Construction Heuristic

The main idea of simple construction heuristic is starting with no instances selected and then
trying to add instance subsets gradually based on the value of the objective function, which is

defined as:

a>1. (15)

£(8)= log(l - é(w(S))j +a log(mj |

The objective function here is similar to the fitness function used in genetic algorithm, which

is also the combination of the tree’s accuracy and its size. Figure 10 shows some major steps

of this approach.
Start with S =&, I'= 3,1 = {1,2,3,...M},k =0 Stop, output S
and specify the number of subsets K in .S
i
Yes
Y
Randomly divide original dataset 7" into M No
subsets  S,,S5,,....5,, k=K?

A

Calculate the objective value f(S,)
for each subseti, icl/I'

Y
Choose the subset i* with the highest

objective value: i" =argmax{f(S,),iel/I'}
and add itto 8 S =SULS, 1 I'=1'U "} . .
update 7and M: T =T /{S, },M =M —1

Figure 10 Main steps of simple construction heuristic method
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As shown in Figure 10, in each iteration, we randomly divide the remaining instances
into some subsets, build decision trees from each subset, calculate the objective values for all
subsets, and then select the subset with the highest objective value until we have enough
subsets. Next in Section 3.3, we will compare genetic algorithm with greedy heuristic and

simple construction heuristic to show the strength of genetic algorithm.

3.3 Experiment Results

We have shown that GA is quite effective in Chapter 2, but how good is it compared to the
other heuristic methods? Here we will compare GA search with 2-phase Rmhc greedy
heuristic and simple construction heuristic. The objective function f{(S) is taken from equation
(15) and higher objective value is better. We start with the comparison between GA and
2-phase Rmhc. Some results including the tree size, the selected subset size, the decision
tree’s accuracy, the objective value and the computation time are listed in Table 12, and it
can be seen that point-based Rmhc(p) finds better instance subset with smaller tree size thus
resulting in higher objective value than GA considering its much wider search space.
However, the strength of GA lies in its ability to obtain the close results with much less
computation time. On the other hand, the subset-based Rmhc(s) is faster than GA as expected,

but GA is better in obtaining smaller trees and instance subsets.
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Table 12 GA vs. 2-phase Rmhc

2-phase Rmhc(p) 2-phase Rmhc(s) GA Search
Dataset
i ) Tree Subset ) Accuracy  Subset )
(size) Subset size _ Accuracy _ Tree size Tree size  Accuracy
size size (%) size
Letter 3966.0 1169.0 86.2 7998.0  1365.4 85.9 6735.0 12443 82.3
Segment 94.3 23.7 93.9 692.0 37.8 94.3 381.2 33.4 92.6
Scheduling 88.7 9.0 96.6 856.8 18.6 97.5 344.1 8.6 96.3
Sick 5.0 3.0 96.6 251.0 7.0 97.1 251.0 3.8 95.3
Splice 164.0 98.7 91.3 763.2 117.8 91.8 381.2 116.2 91.2
2-phase Rmhc(p) 2-phase Rmhc(s) GA Search
Dataset
) Value of Value of Time Time
(size) _ _ A Time ] ) 1) Value of /{S)
(higher is better) (higher is better)  (seconds) (seconds)
Letter -61.36 4 months -62.72 148.0 -61.95 329.0
Segment -27.49 19.1 hours -31.53 3.0 -30.48 34.4
Scheduling -19.07 23.7 hours -25.34 1.0 -18.68 47.9
Sick -9.56 15.5 minutes -16.89 1.0 -11.63 37.8
Splice -39.88 56.7 hours -41.40 3.0 -41.30 55.7

From the results reported before it is clear that instance selection has a significant effect

on the decision trees, and in particular for many datasets it is possible to significantly reduce

the size of the tree without sacrificing much of the accuracy. A natural question to ask is how

much of this is due to the size of selected instance subset and how much is due to the method

by which they are selected (here the GA optimization). We thus compare the instance subsets

selected using the GA approach to those selected using simple construction heuristic and

simple random sampling. The results are reported in Table 13 and Table 14 for M = 10 and y

= 0.5, that is, the size of the data is reduced to half of the original size. It can be seen that

simple construction heuristic runs very fast, but the quality of the solution is unstable

compared with simple random sampling. Particularly, it obtains smaller tree size on two

datasets (“Letter” and “Scheduling”) but larger tree size on the other three datasets.
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Table 13 GA vs. simple construction heuristic

GA Search Simple construction heuristic
Dataset
Tree size Accuracy Tree size Accuracy
Letter 1244.3 82.3 1526.6 87.7
Segment 53.4 95.2 60.2 96.0
Scheduling 27.8 98.0 56.2 99.3
Sick 12.4 98.0 32.2 98.7
Splice 146.2 92.8 810.0 93.3
GA Search Simple construction heuristic (SIS)
Dataset
Value of /(S) Time (seconds) Value of /(S) Time (seconds)
Letter -61.95 329.0 -63.65 53.0
Segment -34.50 34.4 -35.53 2.8
Scheduling -28.81 47.9 -34.89 1.3
Sick -21.82 37.8 -30.07 1.5
Splice -43.26 55.7 -58.07 2.5
Table 14 GA vs. simple random sampling
Original GA Search Random Sampling
Tree Valueof  Tree Accuracy  Valueof  Tree Value of
. Accuracy . . Accuracy
size AS) size (%) AS) size AS)
Scheduling  69.0 99.6 -36.65 27.8 98.0 -28.81 69.1 99.2 -36.68
Splice 229.0 94.1 -47.12  146.2 92.8 -43.26  229.0 91.8 -47.16
Segment 77.0 96.9 -37.65 53.4 95.2 -34.50 572 95.0 -35.10
Letter 2451 88.0 -67.74 12443 82.3 -61.95 15794 83.7 -64.00
Sick 61.0 98.8 -35.60 12.4 98.0 -21.82 240 98.1 -27.54

Moreover, the results in Table 13 and 14 indicate that simple construction heuristic and
simple random sampling have similar effects as the GA search, that is, for four out of the five
test datasets the size of the tree is reduced if a random subset of half the instance is used
instead of the whole set. Part of the effect of GA-based instance selection thus must be
contributed to the simple fact that fewer instances are used after instance selection than
before instance selection. However, the method by which the instances are selected is also
clearly very important. For each of the datasets the GA search results in instance subsets that

on the average give significantly smaller trees and higher objective values.
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CHAPTER 4. INSTANCE SELECTION FOR DECISION

TREE PRUNING

4.1 Decision Tree Pruning Techniques

Decision tree pruning methods originally proposed in Breiman et al. (1984) have been shown
in various studies that they can improve the generalization performance of a decision tree,
especially in noisy domains. Another key motivation of pruning is “trading accuracy for
simplicity” as presented in Bratko and Bohanec (1994). When the goal is to produce a
sufficiently accurate compact decision tree, pruning is highly useful. There are various
techniques for pruning decision trees, including cost-complexity pruning (Breiman et al.,
1984), minimum error pruning (Olaru and Wehenkel, 2003), pessimistic pruning (Quinlan,
1993), optimal pruning (Bratko and Bohanec, 1994), minimum description length (MDL)
pruning (Mehta et al. 1996), minimum message length pruning (Wallace and Patrick, 1993),
and critical value pruning (Mingers, 1989). Several studies aim to compare the performance
of different pruning techniques (Quinlan 1987; Mingers, 1989; Esposito et al. 1997). The
results indicate that there is no pruning method that in any case outperforms other pruning
methods.

Generally speaking, these pruning techniques can be divided into two categories:

Prepruning and Postpruning. Prepruning will try to decide when to stop developing subtrees
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during the tree-building process, while postpruning is adopted by building the complete tree
and pruning it afterward. It seems that prepruning is quite attractive because it may avoid all
the work of developing unnecessary subtrees, however, postpruning does offer some
advantages over prepruning in some “combination-lock” situation, that is, the situation where
the correct combination of the two attribute values is very informative whereas the attributes
taken individually are not. So most decision tree builders use postpruning techniques and it is

still an open question whether prepruning strategies can perform as well.

4.1.1 Postpruning Operations

Two different operations have been involved for postpruning: subtree replacement and
subtree raising (Witten and Frank, 2000). At each node, the learning scheme will decide
whether to perform subtree replacement, subtree raising or leave the subtree unpruned.
Subtree replacement is implemented by proceeding from the leaves and working back up
toward the root as shown in Figure 11, (a) is the original decision tree and (b) shows the
pruned tree. The subtree C in the original decision tree has three leave nodes: L1, L2, and L3.

After subtree replacement, this subtree is replaced by a single leaf node L1.
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Subtree

Replacement E

(@) (b)

Figure 11 Example of subtree replacement

The second postpruning operation, subtree raising, is more complex. As illustrated in
Figure 12, the entire subtree from C downward has been raised to replace the subtree B. Note
that in this raising operation, it is necessary to reclassify the instances at the nodes L4 and L5
into the new subtree C. So the children of that node L1°, L2’ and L3’ include not only the

original children L1, L2 and L3 but also the instances covered by L4 and LS.

Subtree
Raising

L1 L2' L3’

(@ ®)

Figure 12 Example of subtree raising
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4.1.2 Frequently-used Postpruning Algorithms

There are two broad classes of postpruning algorithms. The first class includes algorithms
that use a separate set of instances for pruning, distinct from the dataset used for building the
decision tree. For example, Quinlan (1987) proposed a reduced-error pruning technique that
simply involves holding back some data and using it as an independent test set to estimate the
error at each node. The subtree will be pruned if it provides better estimated accuracy on the
test data. The obvious disadvantage of this approach is that the actual tree is built on less data.
Another pruning technique, minimal cost-complexity pruning (Breiman et al. 1984), tries to
find a series of trees that minimize a function that linearly combines the classification error
and the number of leaves in the tree and cross-validation is used to select the best tree. In
addition to the ad-hoc nature of cross-validation, this approach also suffers from the
drawback that multiple candidate trees need to be generated, which can be computationally
expensive.

The second class of decision tree pruning algorithms, which include C4.5 pessimistic
pruning (Quinlan, 1993) and MDL pruning (Mehta et al. 1996), uses the whole training data
for decision tree generation and pruning. C4.5 pessimistic pruning tries to make some
estimate of the error based on the training data itself. The idea is to consider the task of
classification as a binomial experiment. Given a test set that contains » instances, let X be the
number of instances incorrectly predicted by a model and g be the true error rate of the model.

By modeling the prediction task as a binomial experiment, X has a binomial distribution with
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mean n-q and variancen-q-(1—gq). It can be shown that the empirical error rate, f' = % ,
also has a binomial distribution with mean ¢ and variance - L —q% (Miller and Miller,
2004). Although the binomial distribution can be used to estimate the confidence interval for
£, it is often approximated by a normal distribution when # is sufficiently large. Based on the

normal distribution, the following confidence interval for f can be derived as (Miller and

Miller, 2004):

Pl-z < J=4 g -« (16)

al2 — q(]—q)/n = “l-a/2 | T
where Z_,, and Z, _,, are the upper and lower bounds obtained from a standard normal

distribution at confidence level (1—a ). Since a standard normal distribution is symmetric

around Z =0, it follows that Z ,=Z, ,. Rearranging this inequality leads to the following

confidence interval for ¢:

Z,,, > 7.
A izm\/f_f+

2
2n n2 n 4n 17)

al2
n

1+

which for default a =25% used in C4.5 pessimistic pruning, Z

a

,,=1.15. Higher o will
lead to higher classification accuracy but larger tree size, and o =25% seems an appropriate
default value which is able to obtain good accuracy without over-pruning from some research

results (Quinlan, 1993). And the upper bound for ¢ is used as a pessimistic estimate for the
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Z 2 2 Z 2
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error rate e at the node as ¢ = . Similarly the subtree will

be pruned if the pruning tree yields lower estimated error rate.

MDL pruning, on the other hand, considers the following scenario: given the description
of the complete decision tree and the description of all training instances in terms of values
for all attributes and the class label, find the pruned tree that minimizes the description length
of the remaining structure of the tree plus the description length of the classification of all
instances given the pruned tree. Therefore, the subtree is pruned if

MDL(node) = Prior MDL(node)— Post MDL(subtree(node)) <0 (18)
The algorithm proceeds bottom-up from leaves toward the root of the tree and for each
internal node makes a decision whether to prune the subtree or not by the MDL(node) <0

criterion. A simple MDL measure is given by Kononenko (1995) as

n n+c—1
Prior MDL(node)=1log +log (19)
Ny, c—1

where n; is the number of instances from the i-th class and ¢ is the number of class values.
The first term represents the encoding length of class of # instances, i.e. the encoding length
of training data and the second term represents the encoding length of the class frequency.

For example, if every class label occurs at least once, the possible combinations will be

-1 -1
(n J . (SJ, if one class label never occurs, the possible combinations will be (n JU},
C - c —
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and so forth. Finally we have the total possible class occurrence counts as

| n—1 c n+c—1 ) .
. . = as shown in equation (19). So the second term can be
o[ \€—

- —-r)\r c—1
viewed as the model cost of the model class involved (Mehta et al. 1996). There are some
other formulas for the MDL code length as described by Krichevsky and Trofimov (1983)
and Mehta et al. (1996). When compared to other algorithms such as pessimistic pruning that
do not use separate dataset for pruning, the MDL-based pruning algorithm tends to produce
trees that are significantly smaller in size.

In next section, we will compare the results from instance selection without pruning on
obtaining small decision trees with the results from two widely-used pruning techniques

including reduced error pruning and C4.5 pessimistic pruning. For the MDL pruning, we will

report some results from Mehta’s paper (Mehta et al. 1996).

4.2 Instance Selection for Pruning Decision Trees

Table 15 lists some main results for different decision tree pruning techniques with different
number of minimum instances on leaf nodes (the complete results are listed in Appendix B,
Table A13). With larger number of minimum instances on leaf nodes, the decision tree is
forced to stop growing earlier so the tree size is smaller; but the accompanying problem is
that the tree may not be developed well to fit the training data so it is less accurate.
Considering the MDL pruning presented by Mehta et al. (1996) with the minimum number of

leaf instances is 5, for the “Letter” dataset, the tree size after MDL pruning is 1174.8 and the
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accuracy is 84.2%; for the “Segment” dataset, the tree size is 56.2 and the accuracy is 94.5%.
As a comparison, for the “Letter” dataset, using reduced error pruning with subtree raising,
the tree size is 965 and the accuracy is 82.8%; using C4.5 pessimistic pruning with subtree
raising, the tree size is 1499 and the accuracy is 85.9%; using instance selection without
pruning, the tree size is 857 and the accuracy is 81.6%. This example indicates that even for
the decision tree without any pruning, instance selection still works well in obtaining good
accuracy and small tree size compared to other pruning techniques. Therefore, instance

selection can be used as a good alternative for tree pruning.

Table 15 Major results for different pruning techniques

Minimum leaf Instance selection ) ) )
) ) Reduced error pruning C4.5 pruning with
Number of nstance setting without pruning ) . .
. . with subtree raising subtree raising
Dataset minimum without pruning (Top 50%/75%)*
leafinstances  Tree Tree Tree Tree
) Accuracy ) Accuracy ) Accuracy ) Accuracy
size size size size
5 1637 85.9 857.0 81.6 965 82.8 1499 85.9
Letter 10 987 83.2 509.0 76.7 647 80.1 931 83.2
15 755 81.3 348.6 73.0 409 75.7 589 79.2
5 61 99.4 33.0 98.6 43 99.1 55 99.4
Scheduling 10 47 99.1 24.2 98.1 37 98.7 41 99.1
15 43 98.9 18.2 97.6 29 97.9 35 98.6
5 332 92.7 172.0 90.5 154 92.7 171 94.4
Splice 10 213 91.2 116.2 87.9 142 90.9 134 92.5
15 156 90.3 66.4 85.3 74 86.5 108 89.9
5 75 96.0 36.2 94.6 43 95.0 59 96.0
Segment 10 47 95.1 25.0 92.4 39 94.9 47 95.0
15 39 95.0 20.6 90.4 31 92.8 33 94.3
5 50 98.9 15.6 98.1 39 98.3 34 98.8
Sick 10 37 98.5 10.0 97.9 17 98.0 28 98.6
15 24 98.3 8.6 97.5 7 97.9 14 98.1

*: Scheduling, segment and sick: use top 50% selected instances; Letter and splice: use top 75% selected instances to obtain

close accuracies
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4.3 Case Study: Instance Selection for Sick Dataset

Exploring the selected instances will provide more insights for our instance selection
approach. There are several ways in which instance selection could be helpful: eliminate
outliers, eliminate missing values, and select the most useful instances for separating classes.
However, there is also a concern that instance selection may eliminate or vastly reduce
minority classes in unbalanced datasets. All these issues are explored in this section for
“Sick” dataset. We choose this dataset because it is the only one with the required
characteristics: missing values, outliers, and unbalanced class. First of all, Figure 13 and 14

show the decision trees before and after instance selection, respectively.

= Weka Classifier Iree Wisualizer:s 12:02:390 = Frees Ja8T(E1ckEY

==171 =171

==53 <= 5& 56 ==2526
L e oot 1259
== ‘\9 19 <= 136 =136 = SVHGtherE3WE RvEYHD
e m
?8 78 = SYHather = S\EFTEWHD == 14 14
ﬁ‘ e s 01t (13 (20 kv 498 s 870
== 0£0.67 ==151 =151 ==02027
s s -. o k(18 e (11.70)

<=0505 <=JF 77 = 6% 69 <=7% 73

==8% 61

==0505

Figure 13 Decision tree before instance selection on sick dataset

www.manharaa.com




68
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Figure 14 Decision tree after instance selection on sick dataset

Before instance selection, the decision tree has 61 nodes, 34 leaves and uses 12 distinct
attributes for splits (“T3”, “T3 measured”, “TT4”, “TSH”, “FT1”, “T4U”, “referral source”,
“sick”, “age”, “query hypothyroid”, “on thyroxine” and “T4U measured”). After instance
selection, the decision tree contains only 7 nodes, 4 leaves and 3 split attributes (“T3”, “T3
measured” and “TT4”). More importantly, the tree is much more interpretable. From medical
knowledge (Fu, 2007), the values of “T3” and “TT4” are two most important measures to
reflect the patient’s thyroid situation. The normal “T3” value is 1.23~3.39 nmol/L, if the

value of “T3” is less than 1.23 and the value of “TT4” is over 30 times than “T3” value, it is

highly possible that the patient has thyroid disease. The decision tree in Figure 14 shows that
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if “T3” value is less than 1.1 and “TT4” value is higher than 53, the patient has thyroid
disease, which is quite consistent with the medical knowledge.

Moreover, 2-dimensional projection tour plots from GGobi (Swayne et al. 2003) are used
to display the distribution of the class attribute before and after instance selection.
Mathematically, a 2-dimensional projection of data is computed by multiplying an #nx p data
matrix X by an orthonormal px2 projection matrix A. These tour plots are useful in
revealing interesting data structures, such as clusters of points and outliers. For data mining
models, tour plots can help to understand how the models work in a particular problem (Cook
et al., 1995). For a 2-dimensional tour plot, the x-axis corresponds to the values of data
matrix X projected to one dimension and the y-axis corresponds to the values of data matrix
X projected to the other dimension. For example, suppose the data matrix X and projection

A were these (Cook et al., 1995):

0 0 O 0 0
0 0 15 0 0
0 15 0 0 15
0 15 15 Lo 0 15
X= and A, =|0 1 then XA, = is the first two columns
15 0 0 15 0
0 0
15 0 15 e 15 0
15 15 0 15 15
115 15 15 |, 115 15 |,

of the data matrix X. If instead
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o 0
0 12.60
10.65 6.30
0.71 -0.42
10.65 18.90 : o
A, =071 042 then XA, = is a combination of all three columns
10.65 -6.30
0 084
e 10.65 6.30
2130 0
121.30 12.60 |,

of the data matrix X. These projections are illustrated in Figure 15, which shows the data
projections, XA; and XA,, respectively. More examples of these 2-dimensional tour plots

can be found in Appendix G (Figure A13, Al15, A17 and A19).

Data projected into A1 Data projected into A2
24 24
20 1 20 t .
16 * - 16
S 12 - T 12 * *
S S
8 87 g 8 .
o o
& 4 r T 4
0+ . . 0 * *
4 4
*
8 ‘ -8 1
8 4 0 4 8 12 16 20 24 8 4 0 4 8 12 16 20 24
Projection 1 Projection 1

Figure 15 Two 2-dimensional data projections

Figure 16 and 17 show the tour plots on “Sick” dataset before and after instance selection.
The green cross points represent the “negative” class while the blue circle points represent
the “sick” class. Figure 16 (a) and Figure 17 use the three attributes in the decision tree after

instance selection, that is, “T3”, “T3 measured” and “TT4”, while Figure 16 (b) uses the
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twelve attributes in the decision tree before instance selection including “T3”, “T3 measured”,
“TT4”, “TSH”, “FTI”, “T4U”, “referral source”, “sick”, “age”, “query hypothyroid”, “on

thyroxine” and “T4U measured”.

Error

Missing values TE=ED

(a) (b)

Figure 16 Data visualization before instance selection
(a) using three attributes; (b) using twelve attributes

As is known, a decision tree can be viewed as a partitioning of the instance space and the
instance space can only be partitioned in boxes parallel to axes of the space. Each partition,
represented by a leaf, contains the instances that are similar in relevant respects and thus are
expected to belong to the same class. So if the instances from the same class are close to each
other and well separated from the instances from other classes, the decision tree can find the
partition quickly hence the size of the tree is better controlled. From Figure 16, it can be seen
that before instance selection there is a lot of overlapping on the distribution for the classes

no matter we use three or twelve attributes, so while it is quite possible to grow a tree that fits
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the training set well it may become too elaborate. On the other hand, the distribution of the
classes is much more separated after instance selection as shown in Figure 17, thus it is easier
for the decision tree to find a good partition of the whole space and helps to cut down the

tree’s size.

T3=4.4, TT4=273

T3=7.3, TT4=430

>2< T3=5, TT4=244
#

X Extreme (far out) outliers

#

Missing values e
W Te=nuLL I

)xsgl( T3 measured=f

Figure 17 Data visualization after instance selection

As a comparison, Figure 18 shows the scatter plot matrix on selected instances. It can be
seen that even though Figure 18 does show some relationship between those three important
attributes with the classification, it is still difficult to determine the exact separation of the
two classes from the pairwise plots without the combination of the three attributes. However,
by using a tour plot, the separation of the two classes can be drawn using all three attributes

as shown in Figure 17. The upper left corner is separated as “sick” class and the other space
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is separated as “negative” class. It can be seen that there are three instances (plotted as cross)
incorrectly classified as “sick” which are very close to the border and there are four instances

(plotted as circle) incorrectly classified as “negative”. These seven points are the errors from

decision tree. So the tour plot clearly displays the tree solution to this classification problem.

Figure 18 Scatter plot matrix of three important attributes
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Furthermore, from Figure 16, it can be easily identified one error in the original data.
This error has the value of 455 in “age” attribute which is impossible for a patient. However,
after instance selection, this instance is excluded from the selected subset as shown in Figure

19, which indicates that instance selection may get rid of some errors in the original data.

Before instance selection

Arfter instance selection
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Figure 19 Bar charts on age attribute before (left) and after (right) instance selection

There are some further interesting insights that can be read from Figure 16 and 17. Both
of these figures have some data points arranged in straight line because these instances have
missing values in attribute “T3” and identical values in attribute “T3 measured”. The
presence of missing values in a dataset can affect the performance of a classifier constructed
using that dataset as a training data. Rates of less than 1% missing data are generally
considered trivial, 1~5% manageable. However, 5~15% require sophisticated methods to
handle, and more than 15% may severely impact any kind of interpretation (Little and Rubin,

2002). Before instance selection, the number of these missing values is 769 (the rate of the
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number of missing values over the total number of instances is 20.4%) while after instance
selection, the number of these missing values is down to 31 (the rate drops to 12.4%).
Instance selection thus helps to reduce the number of missing values, which is certainly
beneficial for the decision tree even though C4.5 decision tree is able to deal with missing
values.

Besides missing values, the sick dataset also contains some possible outliers. For example,
considering attribute “TT4”, there appear to be some data points on the far top in the bar
charts as shown in Figure 20. For quantifiable methods, modified z-score method (Barnett,

1985) and box plot rule can be used to identify the possible outliers.

Before instance selection After instance selection

I.——++—

[ k) [ ==

T4

T4

Figure 20 Bar charts on TT4 attribute before (left) and after (right) instance selection

Z-score method is based on robust regression methods (Rousseeuw, 1987). In the

original z-score test, the mean x and standard deviation s of the dataset are used to obtain a
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z-score  z, =% 7Y% for each observation. Donzenis and Rakow (1987) suggested that

N

absolute z-score higher than 2.70 should be considered “outside” and higher than 4.72 should
be considered “far out”. However, this method is not reliable because both the mean and
standard deviation are influenced by the outliers. To address this problem, the modified
z-score method uses the median of absolute deviation about the sample median (MAD) to
replace the standard deviation s in z-score calculations. The MAD is defined as

MAD = medianﬂxl. —-X,, }, where x,, is the median of entire data. Table 16 lists the results

from modified z-score method for attribute “TT4” before and after instance selection.

Table 16 Modified z-score method for identifying outliers

Attribute TT4 Before instance selection  After instance selection
Sample mean  x 108.3 1113
Sample median X, 103 109.5
MAD value 18 22
Sample size (without missing values) 3541 240
Number of missing values 231 (6.1%) 11 (4.4%)
Number of outside outliers (z-score> 2.70) 435 (12.3%) 20 (8.3%)
Number of far-out outliers (z-score> 4.72) 123 (3.5%) 3 (1.2%)

It can be seen from Table 16 that before instance selection, there are 435 potential
outliers in “TT4” which takes up 12.3% of the entire data including 123 “far out” outliers
which takes up 3.5% of the entire data. However, in the selected instances, there are only 20
possible outliers in “TT4” with 3 “far out” outliers, and the rates for “outside” and “far out”

outliers drop from 12.3% to 8.3% and 3.5% to 1.2% respectively. Again Table 16 shows that
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instance selection greatly reduces the missing values. 220 missing values in original data are
excluded from the selected instances.

Modified z-score method is mainly applied to normally distributed data. But the results
from Kolmogorov-Smirnov normality test (Kolmogorov, 1933) indicate that the normal
distributional assumption may not be satisfied, so the modified z-score method may mislabel
or miss some outliers. Box plot rule, on the other hand, does not require the normal
distributional assumption. Box plot has become the standard technique for presenting the
S-number summary which consists of the minimum and maximum range values, the 25th
percentile (Q), the 75th percentile (Q3) and the median. The rule states that an observation is
labeled as a “mild” outlier if its value is less than [Q, —1.5x(Q, —0Q,)]or larger than
[0, +1.5%(0, —0,)]; it is an “extreme” outlier if its value is less than [Q, —3x(Q, —0O,)]or

larger than [Q, +3x (0, —Q,)] (Tukey, 1977). Table 17 lists the results from box plot rule.

Table 17 Box plot rule for identifying outliers

Attribute TT4 Before instance selection  After instance selection
25th Percentile (Q)) 87 85.5
Median 103 109.5
75th percentile (O) 124 127
Sample size (without missing values) 3541 240
Number of mild outliers 495 (13.9%) 32 (13.3%)
Number of extreme outliers 71 (3.5%) 3 (1.3%)

Comparing the results from modified z-score method in Table 16 and box plot rule in
Table 17, it can be seen that box plot rule identifies more mild outliers than modified z-score
method but equal or less extreme outliers. Box plot rule finds 495 mild outliers in original

data and 71 of them are extreme outliers; after instance selection, the number of mild outliers

www.manaraa.com



78

is down to 32 and 3 of them are extreme outliers. It is interesting that the extreme or far out
outliers from modified z-score method and box plot rule turn out to be the same. These three
outliers are also highlighted in Figure 17. Nevertheless, the results from Table 16 and 17
consistently reveal another benefit from instance selection, that is, it may help to reduce the
possible outliers in the data, especially the “far out” or extreme outliers, which is beneficial
to the development of better data mining models since in the presence of outliers, any
statistical analysis based on sample means and variances can be distorted.

Last but not least, Figure 16 and 17 show that the two class values are not balanced in the
original dataset as well as the selected instance subset, so there is a concern that instance
selection would eliminate a minority class and the overall accuracy of the decision tree may
be misleading. In particular, the original sick dataset has 3541 “negative” values but only 231
“sick” values (the ratio between the number of the minority class and majority class is 6.5%);
while in the selected instance subset, there are 228 “negative” values but only 23 “sick”
values (the ratio is 10.1%). When a dataset is unbalanced (the number of instances in
different classes varies greatly), the error rate of a classifier may not be representative of the
true performance of the classifier. A confusion matrix (Kohavi and Provost, 1998) is helpful
under this situation. This matrix contains information about actual and predicted
classifications done by a classification model. For example, considering a binary
classification problem (positive or negative), the confusion matrix will have four categories

as shown in Figure 21 (a): True positives (7P) are instances correctly classified as positives;
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False positives (F/P) are negative instances incorrectly classified as positive; True negatives
(TN) correspond to correctly classified negatives; finally, false negatives (FN) refer to
positive instances incorrectly classified as negative. Figure 21 (b) gives some definitions of
different evaluation measures from the confusion matrix (Davis and Goadrich, 2006). The
True Positive Rate measures the fraction of positive instances that are correctly classified.
The False Positive Rate measures the fraction of negative instances that are misclassified as
positive. Recall is the same as True Positive rate, whereas Precision measures the fraction of

instances classified as positive that are truly positive.

TP
Ac‘.[u.al Actu.al Recall = TPLEN
positive negative -
Predicted P FP Precision = TP+FP
ositive .. TP
P True Positive Rate = TP+ N
Predicted FN N P
negative False Positive Rate = —>——
(a) (b)

Figure 21 Confusion matrix (a) and related evaluation measures (b)

Our concern here is that instance selection would vastly reduce the minority class then
the decision tree from the selected instances may have high overall accuracy but poor recall
on the minority class since the majority class dominates the classification results. We want
the decision tree to have good performance both on the majority and minority class, so the

value of recall or true positive rate on the minority class is of special interest.
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Table 18 Performance of the decision tree before/after instance selection

Before instance selection After instance selection
Confusion matrix (10-fold cross validation) 10-fold cross validation ~ Independent test set
Negative Sick Negative Sick Negative Sick
Classified as negative 3523 27 225 4 1173 6
Classified as sick 18 204 3 19 12 67
True positive rate 99.5% 88.3% 98.7% 82.6% 99.0% 91.8%
False positive rate 11.7% 0.5% 17.4% 1.3% 8.2% 1.0%
Precision 99.2% 91.9% 98.3% 86.4% 99.5% 84.8%
Recall 99.5% 88.3% 98.7% 82.6% 99.0% 91.8%
Kappa statistic 0.89 0.83 0.87
Overall accuracy 98.8% 97.2% 98.6%

Table 18 includes the confusion matrix and different performance measures for the
decision trees. Using 10-fold cross-validation, the decision tree built on the entire data has
the recall of 99.5% for the “negative” class and 88.3% for the “sick” class. After instance
selection, the decision tree from the selected subset has the recall of 98.7% for the “negative”
class and 82.6% for the “sick” class. As expected, the decision trees have higher accuracies
on the majority class, but the accuracies on the minority class are still acceptable with more
than 80%. More importantly, as in all of the above experiments, the decision tree from the
selected subset is applied to another independent test data (1185 “negative” instances and 73
“sick” instances) to obtained an unbiased estimate of the accuracy. The tree obtains the
overall accuracy of 98.6%, the recall of 99.0% on “negative” class and the recall of 91.8% on
“sick” class. Instance selection therefore actually increases the recall for the minority class on
the test data. Also the decision trees before and after instance selection both have high Kappa
statistic values (over 0.8), which represents the correlation between the classification and the

actual data. The value of Kappa statistic ranges from 0 to 1. A perfect classification will have
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a Kappa value of 1. Typically, values greater than 0.8 represent strong agreement between
classification and the actual data while values between 0.4 and 0.8 represent moderate
agreement. Anything below 0.4 is indicative of poor agreement (Congalton and Green, 1999).
So the high Kappa statistic values in Table 18 indicate that the classification predicted by
decision trees has good agreement with the actual data and the unbalanced structure of this
dataset does not have great impact on the performance of the decision tree.

Similar analysis is applied to the other two datasets (“Scheduling” and “Splice” data)
that also have unbalanced class values and the results are listed in Appendix H (Table A20
and A21). It can be seen that after instance selection, the recalls of the “Splice” data are quite
good for those two minority classes (“EI” and “IE”) with over 85% while the recall of the
“Scheduling” data is unacceptable for the minority class (“no”) with only 41.7%. So for
“Scheduling” data, the unbalanced classes do affect the performance of the decision tree from
the selected instances. One possible way to address this concern is to incorporate the recall
for the minority class into the objective function, for example, the objective function might

be modified as follows:
£(S) = —log(e(l//(S))j — log(recall for minority class)—a 1og[WJ, a>1.  (20)

With the modified objective function, the optimization is forced to search the instances from
which the relatively high recall on the minority class can be obtained. Appendix H (Table

A20) also includes the results from the modified objective function for comparison. It can be
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seen that six more instances are selected from the minority class resulting in higher recall
value. Even the overall accuracy is reduced slightly from 97.1% to 95.9%, the recall on “no”
class is greatly increased from 41.7% to 83.3%. Thus, the modified objective function acts
quite well in improving the decision tree’s performance on minority class. It is also
interesting that the accuracies on different classes have similar patterns before and after
instance selection. For example, the decision tree from original “Sick” dataset has higher
accuracy on “negative” class than “sick” class, then after instance selection, the decision tree
from the instance subset still has higher accuracy on “negative” class. Similar conclusions
can also be reached for “Scheduling” and “Splice” datasets from Appendix H (Table A20 and
A21), which implies that instance selection tends to keep the instances doing well in
classification.
As a brief summary for this section, the benefits from instance selection may include:
® Reduce the size of decision tree and the amount of data needed for inducing good
decision tree.
® Reduce some missing values from the original data.
® Reduce some possible outliers, especially the extreme outliers, from the original data.

® Keep the instances that help to obtain good classification accuracy.
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CHAPTERS. CONCLUSIONS

Facing the mounting challenges of enormous amounts of data, much of the current research
concerns itself with scaling up data mining algorithms. Instance selection, which is dealing
with scaling down the data, provides an alternative to the algorithm scaling-up and has drawn
more and more attention recently. As data mining is applied to larger datasets, effective
instance selection can be expected to grow in importance. In this dissertation we present an
optimization-based approach to instance selection for improving decision tree. We provide in
the following sections a summary of main results, general conclusions and some directions

for future research.

5.1 Summary of Results

The objective of instance selection is to select an instance subset that results in smaller and
more easily interpretable decision trees without losing predictive accuracy. To obtain
heuristic solutions to this problem we used a genetic algorithm (GA) implementation. Section
2.2 describes the details of the genetic algorithm. The genetic algorithm incorporates decision
tree’s accuracy and size into its objective (fitness) function, thus during the search process,
the algorithm tries to find the instance subset from which the small and high quality decision
tree can be developed. The decision tree from the entire dataset and the selected instances are

both evaluated using an independent test data. Through the computational experiments on
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five different datasets from UCI Machine Learning Repository, we have shown in Section
2.3.2 that for C4.5 decision trees, the size of the tree can be significantly reduced using
instance selection, while the predictive accuracy is good. One concern for this approach is
that it may be time consuming for large datasets since lots of decision trees have to be built
and evaluated during the GA process. So in Section 2.3.3, GA-based instance selection is
applied to a large dataset with over 50,000 instances and the computation time grows only at
linear rate, which indicates that our approach is able to find good instance subsets with
acceptable computation cost. Then a natural question for GA-based instance selection is
when this approach is the most likely to work well. A study of data entropy in Section 2.3.4
leads to the conclusion that GA-based instance selection works best for the dataset with
relatively low data entropy. For example, the dataset with only two class values has much
lower entropy than the dataset with multiple class values, then for two-class problem, we
usually only need a small fraction of the instances to build a good decision tree, while for
multi-class problem, much more instances are needed hence there is less benefit from

instance selection.

In addition to showing the effectiveness of GA-based instance selection, Chapter 3
compares the results from genetic algorithm and other heuristic methods including Rmhc
greedy heuristic and simple construction heuristic. The point-based Rmhc method has the
best solution due to its widest search space, but it is very heavyweight in computational

resources. On the other hand, the subset-based Rmhc and simple construction heuristic have
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the same search space as GA and they both run very fast, but they are not as good as GA in
terms of solution quality. Considering the speed of the algorithm and the quality of the

solution, GA is obviously the winner with good efficiency and effectiveness.

The dissertation further investigates other decision tree pruning techniques that also try to
reduce the tree’s size and improve its interpretability. Chapter 4 reviews some frequently
used pruning techniques, including reduced error pruning, C4.5 pessimistic pruning and
Minimum Description Length (MDL) pruning. The comparison between instance selection
and these pruning techniques demonstrates that even without pruning, the decision tree from
selected instances has small size and comparable accuracy, so instance selection can be used
as a good alternative for decision tree pruning. Also the case study reported in Section 4.3
reveals some insights from instance selection. More specifically, the study shows that
instance selection effectively reduces the missing values and potential outliers from the
original data while at the same time keeps the instances beneficial for classification. Another
concern for instance selection is that it may eliminate or greatly reduce the minority class for
the dataset with unbalanced classes. With the analysis of confusion matrices on three
different datasets, it is found that one dataset did have this problem, that is, the decision tree
from the selected instances has low recall on the minority class even though the overall
accuracy is high. A possible modification of the objective function, that is, adding the recall
on minority class, is proposed to address this problem and it does perform well in improving

the decision tree’s performance on the minority class.
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5.2 Hypotheses Revisited and General Conclusions

Our work illustrates the usefulness of using instance selection as pre-processing before
decision tree induction, and the effectiveness of using genetic algorithm for obtaining
heuristic solutions to this problem. Some major conclusions are summarized below. Also the

three hypotheses proposed in Section 1.2 are quoted below for ease of reference.

The first hypothesis addresses the effectiveness of genetic algorithm for instance selection:

Hypothesis 1

GA-based instance selection will produce smaller and more interpretable

decision trees while maintaining an acceptable level of accuracy.

The following conclusions are based on the study of GA-based instance selection in

Chapter 2:

® (GA-based instance selection reduces the size of the decision tree by an order of

magnitude.

® Using different aggregation of the instance subsets, GA-based instance selection

maintains good prediction accuracy.

In addition to these results, which are related to the effectiveness of GA-based instance

selection, the discussion in Chapter 3 concludes that compared with other heuristic
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approaches such as Rmhc greedy heuristic and simple construction heuristic, GA-based

instance selection performs better in balancing computation cost and solution quality.

The second hypothesis addresses the benefit of instance selection for preventing

overfitting in decision tree induction:

Hypothesis 2

Optimization-based instance selection prevents overfitting in decision tree

learning.

The following conclusions are based on the study of average leaf ratio described in

Chapter 2:

® Instance selection is beneficial for decision tree in increasing the average number of
instances (ALR) associated with leaf nodes, thus helps to avoid the overfitting of

decision tree.

® With more instances selected, there is less improvement in ALR hence less benefit from

instance selection.

Furthermore, in Chapter 4, we compare instance selection with different decision tree
pruning techniques. The results show that instance selection can be used as an effective
alternative for decision tree pruning. And through the case study on “Sick” dataset, we find
that instance selection helps to reduce the errors, potential outliers and missing values from

the data while it maintains the instances that perform well in classification.
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The third hypothesis addresses the effects of different parameters in the performance of
instance selection:
Hypothesis 3

Number of instances, number of class values, and number of attributes will affect the

performance of instance selection for improving decision tree

The following conclusions are based on the study described in Chapter 2:

® Number of class values, or more generally, data entropy has great impact on instance
selection. Instance selection works best for low entropy problems; with higher entropy
more instances are needed to account for the diversity in the data to induce good decision

trees and hence there is less benefit from the instance selection approach.

® Number of instances and attributes will influence the speed of genetic algorithm. The
computation time grows only at linear rate with more instances, while it grows faster

with more attributes for large datasets.

5.3 Future Work

It should be noted that even though GA-based instance selection is mainly focused on
improving C4.5 decision trees in this dissertation, it can be applied to other interesting
problems. For example, Li and Olafsson (2005) used instance selection to identify good

scheduling practices and the fitness function was modified to include the scheduling
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performance measure such as maximum lateness. The results showed that instance selection
greatly reduced the maximum lateness and provided more scheduling insights. Moreover,
instance selection has been successfully applied to identity disclosure protection (Zhu and
Wu, 2006). Identity disclosure is one of the most serious privacy concerns nowadays.
Instance selection was used to reconstruct the original data so that the most important

instances for classification can be protected.

Future research will take into account more complicated situations, and better
characterize dataset where this approach is the most likely to work well. In particular, we will
consider how different structures of data such as unbalanced classes, high entropies and
existence of outliers influence the performance of the algorithm. And it will be interesting to
further explore the selected instances since it may reveal some insights of instance selection.
Another important issue in instance selection is how to choose the appropriate number of
subsets. Currently the number of subsets is determined by empirical study, but it will be
beneficial to develop some heuristic for this. We will also consider other choice for defining
a fitness function that balances the size reduction objective with maintaining high predictive
accuracy. Finally, for better data reduction, it is natural to investigate if this work can be
combined with other research in solving the problem of huge amounts of data, such as
algorithm scaling-up, attribute selection and attribute construction. It is still a big challenge
to integrate these different techniques in achieving the goal for effective and efficient data

mining.
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APPENDIX A DIFFERENT PARAMETERS FOR GA-BASED

INSTANCE SELECTION

TABLE A1-A12 (PAGE 91-102)
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Table A1 Results of best subset when fitness weight a and selection constant Q are varied

0=2.0 0=4.0 a=6.0
Dataset 0=1.5 0=2.0 0=2.5 0=1.5 0=2.0 0=2.5 0=1.5 0=2.0 0=2.5

Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avge. SE Avg. SE. Avg. SE. Avg. SE

Scheduling Accuracy 9597 094 96.12 0.74 96.26 039 95.27 0.44 95.16 0.85 9528 0.82 9578 0.60 9499 0.84 9586 0.51
Best subset Treesize 10.20 240 1020 2.71 1140 1.50 7.80 2.04 980 2.04 860 233 780 204 900 126 10.60 0.80
ALR 19.43 320 1990 451 17.25 226 2535 6.07 20.16 3.88 2337 649 2524 6.01 2144 297 1822 1.42

Splice Accuracy 71.65 10.15 73.65 10.59 68.27 13.24 69.32 8.69 73.72 1236 68.69 1038 6892 9.71 7641 2.63 76.25 4095
Best subset Treesize 25.80 13.06 27.40 1544 19.80 15.53 23.60 12.27 27.80 13.63 22.60 13.04 26.40 1295 39.00 3.87 32.00 4.24
ALR 23.80 3931 2432 40.59 44.65 49.66 2431 3931 2433 41.10 25.60 41.04 24.17 4039 338 031 4.19 0.59

Segment  Accuracy 88.12 3.08 90.63 1.11 89.52 0.79 8244 5.19 87.19 328 8592 347 8442 4.63 80.64 3.60 84.89 3.51
Best subset Treesize 17.40 233 17.80 1.19 1860 1.57 1460 1.60 17.00 139 16.60 2.03 1580 1.17 1540 1.57 1620 2.12
ALR 11.50 1.53 11.10 0.68 10.79 0.87 13.65 131 11.64 0.86 1224 147 12.60 092 1290 1.06 1249 1.48

Letter Accuracy 58.89 2.64 58.67 | 3.05 60.63 1.81 57.69 4.64 60.24 3.03 57.53 4.00 57.28 3.41 5736 3.26 60.58 241
Best subset Treesize 257.0 23.43 262.6 11.19 2694 17.43 264.6 2735 279.4 2138 262.6 19.27 259.0 12.48 264.6 23.90 285.0 20.98
ALR 0.82 0.07 0.80 0.04 078 0.06 080 0.09 075 005 081 0.06 081 0.04 080 0.07 074 0.05

Sick Accuracy 9526 1.40 96.01 1.68 94.19 1.22 96.11 1.84 96.43. 1.18 9556 1.32 9730 1.01 96.62 1.34 96.41 1.37
Best subset Treesize 3.00 2.53 440 3.02 260 211 580 1.18 580 1.09 500 047 620 1.03 560 254 640 140
ALR 75.70 36.92 58.80 40.19 77.80 34.83 32.14 4.63 3128 4.15 3486 0.09 29.67 395 4245 32.87 28.14 6.70
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Table A2 Results of top 25% subsets when fithess weight a and selection constant Q are varied

0=2.0 a=4.0 a=6.0

Dataset 0=1.5 0=2.0 0=2.5 0=1.5 0=2.0 0=2.5 0=1.5 0=2.0 0=2.5
Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avge. SE Avg. SE. Avg. SE. Avg. SE

Scheduling Accuracy 97.25 0.50 97.56 0.34 97.58 031 9752 0.62 9747 040 97.73 039 9747 037 9789 0.82 9747 0.68
Top 25%  Treesize 23.80 299 29.80 2.71 27.00 3.79 23.80 4.66 2740 637 2860 3.67 2620 098 27.00 456 2220 3.92
ALR 819 105 655 062 727 09 837 166 736 142 686 082 736 027 737 142 893 1.84

Splice Accuracy 85.66 1.19 8596 1.48 8508 1.33 8556 1.55 8513 141 86.18 239 86.22 1.71 86.05 1.03 83.63 2.39
Top 25%  Treesize 81.00 9.40 77.40 11.65 70.00 6.16 8240 1097 7240 587 7620 859 8740 16.70 79.40 5.86 &81.00 10.58
ALR 1.56 0.17 1.65 027 179 0.16 154 020 172 015 165 0.18 148 032 157 0.13 156 0.19

Segment  Accuracy 91.73 1.30 91.59 1.23 91.70 0.71 9194 1.84 90.66 1.00 92.08 1.57 90.76 0.85 91.66 0.57 91.14 0.51
Top 25%  Treesize 29.80 3.71 29.00 3.89 30.20 222 29.00 4.06 29.40 2.80 31.00 3.66 33.80 6.82 31.40 3.63 30.60 3.31
ALR 6.59 079 678 091 644 043 679 093 6.63 061 632 067 59 109 624 064 639 0.65

Letter Accuracy 7270 0.72 73.57 | 1.16 7225 1.14 72.59 0.68 73.53 094 73.51 0.60 7225 0.99 7246 132 72.80 0.63
Top 25%  Treesize 629.0 23.82 635.0 19.01 638.6 17.01 6194 32.06 620.6 19.57 619.0 7.94 637.8 283 6374 1245 609.0 17.18
ALR 032 0.01 031 001 031 o001 032 002 032 001 032 000 031 001 031 001 033 0.01

Sick Accuracy 97.44 031 98.14 036 9820 0.37 98.09 034 9754 040 98.06 032 9812 0.50 97.69 0.50 97.63 0.41
Top 25%  Treesize 13.20 4.12 13.80 2.72 1020 3.51 8.80 2.02 11.40 4.08 10.80 3.37 1240 3.81 1140 475 10.00 223
ALR 1233 295 12.44 381 1850 6.24 2050 4.58 17.04 599 1786 5.19 1475 549 17.82 7.00 18.05 4.06
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Table A3 Results of top 50% subsets when fitness weight a and selection constant Q are varied

0=2.0 a=4.0 a=6.0

Dataset 0=1.5 0=2.0 0=2.5 0=1.5 0=2.0 0=2.5 0=1.5 0=2.0 0=2.5
Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avge. SE Avg. SE. Avg. SE. Avg. SE

Scheduling Accuracy 98.41 0.26 98.38 0.12 9843 039 9883 0.20 98.73 0.14 9839 0.19 9834 022 9855 0.24 9856 0.17
Top 50%  Treesize 44.20 3.25 37.80 4.12 39.00 632 37.80 3.49 4020 2.04 4260 6.62 43.00 3.35 4020 2.04 4060 233
ALR 445 033 521 052 512 078 520 047 487 024 470 073 457 036 487 024 482 028

Splice Accuracy 9032 0.70 91.24 0.73 90.15 093 91.69 130 90.73 0.84 9058 1.03 91.37 0.64 89.87 2.10 90.11 0091
Top 50%  Treesize 136.0 8.49 1248 8.04 1284 6.83 1356 13.89 1364 598 1172 2048 1304 4.68 1240 12.06 138.2 11.86
ALR 092 0.06 1.00 006 097 005 093 010 091 0.04 1.09 019 09 0.03 1.01 010 091 0.07

Segment  Accuracy 93.39 0.25 9426 092 9450 0.70 9429 0.73 93.77 1.11 9356 1.17 93.49 0.68 9429 096 93.84 0.79
Top 50%  Treesize 42.20 5.15 46.60 3.59 5340 533 4540 3.64 4500 345 4700 5.13 46.60 3.11 4620 3.58 4500 6.86
ALR 470 059 422 029 371 037 433 031 437 030 421 044 422 026 426 032 445 0.68

Letter Accuracy 79.63 0.58 79.87 | 0.55 79.37 0.46 79.43 0.53 80.07 0.73 80.08 0.52 79.44 1.04 7930 0.50 80.18 0.54
Top 50%  Treesize 1031 14.31 1059 24.76 1058 26.85 1050 26.74 1054 17.66 1065 14.92 1077 40.16 1081 2599 1048 15.17
ALR 0.19 0.00 0.19 0.00 0.19 0.00 0.19 0.00 0.19 0.00 0.19 0.00 019 0.01 0.18 0.00 0.19 0.00

Sick Accuracy 9798 0.23 9843 0.27 9833 033 98.19 034 97.63 042 9811 032 9822 0.51 9795 040 97.76 0.38
Top 50%  Treesize 16.80 5.00 2020 2.72 15.80 437 1560 3.84 17.00 456 12.60 5.69 14.00 543 1440 470 1560 245
ALR 10.25 2.67 867 138 11.58 436 1198 425 11.02 455 1654 658 14.19 6.23 1348 535 1135 242
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Table A4 Results of top 75% subsets when fithess weight a and selection constant Q are varied

0=2.0 0=4.0 a=6.0

Dataset 0=1.5 0=2.0 0=2.5 0=1.5 0=2.0 0=2.5 0=1.5 0=2.0 0=2.5
Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avge. SE Avg. SE. Avg. SE. Avg. SE
Scheduling Accuracy 98.61 0.20 98.72 0.24 98.68 0.33 98.92 0.15 98.82 0.16 9850 0.24 98.75 0.20 98.87 0.22 98.73 0.20
Top 75%  Treesize 48.60 4.08 45.40 3.20 48.60 543 4820 6.14 47.80 3.71 4980 299 4740 528 44.60 320 4580 8.45
ALR 4.06 037 433 030 4.08 042 412 047 412 029 395 022 418 042 441 031 442 0.83
Splice Accuracy 91.15 0.83 9220 0.42 91.07 090 92.89 0.59 91.07 0.77 91.62 0.66 9239 0.47 9147 0.64 91.02 0.83
Top 75%  Treesize 141.8 3.76 149.2 1594 131.0 7.51 148.8 9.01 1472 11.06 1304 14.13 147.0 6.48 140.8 931 148.8 7.02
ALR 0.88 0.02 0.84 008 095 005 084 005 08 006 09 010 0.85 0.03 0.89 0.05 084 0.04
Segment  Accuracy 93.70 0.85 9522 0.78 94.50 0.70 9550 0.76 9436 092 95.12 0.57 93.60 1.23 9498 0.55 9505 0.99
Top 75%  Treesize 48.20 1.60 52.60 2.71 53.40 533 5580 229 5340 8.07 51.00 490 49.40 4.00 5420 553 52.60 3.60
ALR 407 0.13 374 0.18 371 037 353 0.13 376 059 388 038 399 032 366 039 375 025
Letter Accuracy 81.42 0.68 81.78 | 0.72 81.49 0.45 8l1.14 0.57 81.88 0.73 81.60 0.64 81.72 0.48 8l1.61 0.45 82.15 0.53
Top 75%  Treesize 1239 14.61 1244 13.47 1226 11.12 1233 30.48 1265 29.89 1217 17.58 1247 28.50 1251 38.57 1250 22.43
ALR 0.16 0.00 0.16 0.00 0.16 0.00 0.16 0.00 0.16 0.00 0.16 0.00 0.16 0.00 0.16 0.00 0.16 0.00
Sick Accuracy 98.03 0.45 98.27 0.48 9851 0.34 9820 0.32 97.55 048 98.14 0.33 9829 0.55 98.11 0.42 98.16 0.38
Top 75%  Treesize 17.40 4.72 2440 2.83 2240 268 18.80 6.83 20.00 2.14 16.80 4.58 17.20 333 21.00 631 21.20 3.20
ALR 10.15 221 7.11 070 810 1.16 10.72 4.08 838 0.63 11.27 3.62 10.64 3.06 899 290 8.05 0.93
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Table A5 Results of best subset when crossover rate ¢ and mutation rate m are varied

c=0.6 c=0.7 c=0.8

Dataset m=0.01 m=0.05 m=0.09 m=0.01 m=0.05 m=0.09 m=0.01 m=0.05 m=0.09
Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avge. SE Avg. SE. Avg. SE. Avg. SE
Scheduling Accuracy 95.43 0.47 95.83 098 9553 0.71 9583 0.56 9566 1.09 96.01 0.77 9504 0.77 9521 0.62 9505 1.13
Best subset Treesize 9.40 2.65 11.80 1.22 620 1.67 7.80 252 9.00 263 820 216 820 214 820 214 980 1.18
ALR 22.00 7.17 16.48 1.38 30.51 586 2589 747 2255 656 2422 6.04 24.15 6.14 2424 6.05 19.54 1.69
Splice Accuracy 72.77 7.80 72.17 11.15 79.50 3.46 68.83 10.18 72.26 10.56 62.96 13.25 70.81 10.75 69.68 10.42 71.35 9.80
Best subset Treesize 27.00 11.15 26.80 13.83 33.00 2.68 28.00 13.89 27.20 13.88 13.80 15.82 27.60 13.60 23.20 12.09 26.60 13.40
ALR 745 6.74 24.17 4039 4.01 0.19 2426 40.87 23.85 39.78 64.75 49.67 24.68 41.74 2493 40.54 24.09 40.17
Segment  Accuracy 84.61 2.51 84.05 1.42 86.68 426 8626 2.82 8536 298 8530 287 84.18 2.06 84.10 229 86.10 2.88
Best subset Treesize 16.60 0.80 14.20 1.06 17.00 1.35 17.00 225 17.00 143 17.00 226 13.80 1.19 14.60 1.57 1580 2.12
ALR 11.96 0.68 1395 1.05 11.80 085 11.84 183 11.86 0.80 11.76 1.12 1430 0.89 13.80 1.41 12.89 1.69
Letter Accuracy 62.02 1.41 59.82 2.10 6250 1.82 58.46 3.22 5946 234 5935 2.09 5425 3.04 56.17 1.04 57.16 2.74
Best subset Treesize 302.2 8.06 288.6 13.53 311.8 25.87 277.8 2536 278.6 2197 275.0 14.07 240.2 21.74 2534 595 238.6 13.86
ALR 0.70 0.02 0.73 0.03 0.68 0.06 0.76 0.07 076 0.06 076 0.04 0.88 0.08 0.83 0.02 088 0.05
Sick Accuracy 9544 140 95.64 1.62 9638 1.43 9529 2.15 96.22 2.05 9498 145 9453 0.62 9560 1.51 9543 1.30
Best subset Treesize 5.60 2.80 5.00 232 540 243 420 216 460 1.03 320 289 220 252 380 250 420 1.75
ALR 4339 33.18 4549 30.26 44.19 32.00 51.10 2891 38.68 6.84 73.01 38.75 89.16 31.72 61.68 35.89 48.87 27.21
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Table A6 Results of top 25% subsets when crossover rate ¢ and mutation rate m are varied

c=0.6 c=0.7 c=0.8
Dataset m=0.01 m=0.05 m=0.09 m=0.01 m=0.05 m=0.09 m=0.01 m=0.05 m=0.09

Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avge. SE Avg. SE. Avg. SE. Avg. SE

Scheduling Accuracy 97.43 0.78 97.79 0.66 97.25 0.52 98.12 0.46 97.60 0.55 97.29 0.51 9745 045 9748 043 98.08 0.49
Top 25%  Treesize 27.40 5.12 27.00 3.93 2540 332 28.60 3.94 2620 3.37 2340 247 27.00 4.44 29.00 4.48 26.60 4.55
ALR 727 130 7.28 1.03 7.68 090 688 09 746 086 827 077 732 1.15 681 1.00 746 1.36

Splice Accuracy 84.04 2.11 85.62 1.29 82.14 2.53 85.09 1.21 8496 231 8344 1.61 8508 136 83.89 1.86 8515 1.73
Top 25%  Treesize 76.60 6.22 72.00 6.76 78.40 7.69 71.40 16.47 82.60 6.95 58.80 12.77 73.00 10.85 70.40 7.82 76.00 14.50
ALR 1.64 0.14 1.74 0.16 161 0.18 1.82 032 152 0.13 221 041 1.74 025 179 021 170 035

Segment  Accuracy 92.87 0.95 90.87 1.33 9287 0.73 9145 0.87 9045 126 9298 096 92.04 1.57 9221 0.89 9253 1.22
Top 25%  Treesize 28.60 3.44 33.40 397 33.00 2.00 31.80 2.79 31.80 2.81 2740 1.67 31.80 2.77 3140 395 2740 2.15
ALR 6.86 0.85 588 0.58 590 031 6.14 050 6.14 055 7.06 038 6.14 050 626 075 7.07 046

Letter Accuracy 74.02 0.66 72.69 0.83 7336 0.78 72.57 1.02 7293 0.64 7359 0.78 7271 0.89 73.62 0.73 72.01 0.63
Top 25%  Treesize 629.0 10.43 609.4 10.10 6282 19.99 624.6 17.25 6274 1583 619.8 1552 629.8 16.52 633.8 26.79 610.2 11.02
ALR 032 0.01 033 0.01 032 000 032 0.0 032 001 032 0.0 032 000 032 0.0 033 0.01

Sick Accuracy 98.41 0.26 98.55 0.33 98.08 0.39 97.89 0.53 97.38 0.60 9749 0.64 97.74 0.67 97.55 0.45 97.57 0.39
Top 25%  Treesize 12.60 3.56 920 1.81 11.20 348 11.20 3.41 1080 3.75 10.80 230 8.00 144 10.00 1.64 10.00 1.24
ALR 14.08 5.68 19.50 4.00 15.53 4.11 16.08 5.65 17.08 6.62 1539 320 21.86 425 17.71 280 16.21 3.16
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Table A7 Results of top 50% subsets when crossover rate ¢ and mutation rate m are varied

c=0.6 c=0.7 c=0.8

Dataset m=0.01 m=0.05 m=0.09 m=0.01 m=0.05 m=0.09 m=0.01 m=0.05 m=0.09
Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avge. SE Avg. SE. Avg. SE. Avg. SE

Scheduling Accuracy 98.57 0.32 98.50 0.73 98.13 0.59 9851 048 9839 042 9729 0.51 9840 037 9824 0.54 98.61 048
Top 50%  Treesize 35.00 4.73 37.40 593 3420 4.07 4260 337 3780 2.83 36.60 395 3940 398 4380 491 4220 3.40
ALR 565 071 532 076 575 061 461 036 518 034 538 058 500 046 452 055 466 034

Splice Accuracy 90.73 1.01 91.17 0.70 89.49 1.07 90.66 0.83 90.66 0.89 89.29 0.60 8885 1.06 8938 1.59 89.94 0.83
Top 50%  Treesize 132.4 14.83 132.8 7.32 119.8 11.03 133.6 11.10 1250 10.52 124.6 1540 1154 19.02 130.0 9.43 128.0 14.96
ALR 095 0.11 094 005 1.05 009 094 0.08 100 0.08 1.01 0.12 1.11 0.17 096 0.07 098 0.10

Segment  Accuracy 95.61 0.50 9256 1.11 93.88 1.22 9478 144 9291 143 9446 101 9450 0.69 9433 0.80 93.67 0.78
Top 50%  Treesize 46.20 5.46 43.00 3.73 49.80 552 49.00 7.34 47.00 437 4220 553 4540 553 5220 751 4460 556
ALR 430 055 457 036 398 040 4.09 061 420 041 471 061 437 048 384 0.62 445 0.56

Letter Accuracy 79.81 1.04 79.57 1.02 79.85 0.84 7947 0.73 79.96 044 7996 043 79.63 0.83 80.00 0.49 78.97 0.62
Top 50%  Treesize 1069 19.68 1040 18.55 1069 33.22 1041 29.84 1059 12.08 1044 2899 1058 2593 1034 25.01 1040 24.26
ALR 0.19 0.00 0.19 0.00 0.19 o0.01 0.19 0.01 0.19 0.00 0.19 0.01 019 0.00 0.19 0.00 0.19 0.00

Sick Accuracy 98.81 0.15 98.89 030 9847 0.34 9831 034 97.69 050 9816 041 9793 0.50 97.73 033 97.73 0.35
Top 50%  Treesize 20.00 3.35 20.80 2.20 18.80 2.57 19.00 7.36 13.40 3.65 23.00 593 20.60 847 1620 2.06 1840 1.63
ALR 848 1.10 812 0.66 937 1.06 1141 698 1290 396 800 176 10.68 5.62 1036 130 897 0.62
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Table A8 Results of top 75% subsets when crossover rate ¢ and mutation rate m are varied

c=0.6 c=0.7 c=0.8
Dataset m=0.01 m=0.05 m=0.09 m=0.01 m=0.05 m=0.09 m=0.01 m=0.05 m=0.09

Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avge. SE Avg. SE. Avg. SE. Avg. SE

Scheduling Accuracy 98.70 0.20 98.88 0.52 98.50 0.52 9891 0.29 98.80 0.40 98.73 0.36 98.79 0.45 9826 0.56 98.68 0.44
Top 75%  Treesize 45.00 335 4580 439 40.60 2.81 4820 4.79 42.60 438 4420 539 42.60 7.05 47.80 3.89 4620 4.21
ALR 437 031 431 039 483 030 4.10 039 464 050 448 052 471 074 412 031 427 040

Splice Accuracy 91.03 0.82 92.14 0.73 90.15 0.55 91.80 0.56 90.75 0.81 90.66 0.70 90.77 0.76 90.53 1.21 91.43. 0.52
Top 75%  Treesize 138.8 13.33 1474 13.32 1364 523 151.2 12.54 1484 12.82 141.6 6.42 1392 931 141.0 9.67 1442 13.89
ALR 090 0.08 085 0.07 091 003 083 0.06 084 0.07 088 0.04 09 0.06 0.89 0.06 087 0.08

Segment  Accuracy 9592 0.86 93.56 0.98 9554 095 9486 0.50 94.01 0.85 9505 0.77 9464 1.01 9436 0.85 9471 1.13
Top 75%  Treesize 57.00 4.38 51.00 559 57.40 3.82 5420 523 5220 5.10 49.80 4.60 5220 3.14 5620 894 49.80 3.54
ALR 347 026 389 042 344 022 366 037 379 035 397 035 377 021 359 0.63 395 025

Letter Accuracy 82.00 0.59 81.87 0.72 82.02 0.60 81.27 0.65 81.75 0.67 81.82 0.59 &1.81 0.68 82.11 0.53 80.72 0.91
Top 75%  Treesize 1284 44.48 1228 28.60 1237 35.07 1209 25.32 1240 20.78 1228 26.39 1230 13.44 1228 26.54 1263 41.74
ALR 0.16 0.01 0.16 0.00 0.16 0.00 0.17 0.00 0.16 0.00 0.16 0.00 0.16 0.00 0.16 0.01 0.16 0.01

Sick Accuracy 98.87 0.22 98.95 0.39 9855 042 9847 035 97.85 0.57 98.17 042 98.17 037 9785 030 97.73 0.31
Top 75%  Treesize 25.60 4.45 2480 6.22 29.80 4.54 2480 6.59 18.60 2.09 2840 450 20.00 7.08 20.80 4.81 19.80 5.32
ALR 6.89 090 725 145 6.17 098 732 1.71 922 1.14 632 1.04 1003 359 835 150 958 3.65
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Table A9 Results of best subset when number of subsets M and number of GA generations G are varied

M=5 M=10 M=15
Dataset G=20 G=30 G=40 G=20 G=30 G=40 G=20 G=30 G=40

Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avge. SE Avg. SE. Avg. SE. Avg. SE

Scheduling Accuracy 97.43 0.62 97.54 0.83 96.72 122 9630 0.61 9597 1.20 9599 1.08 9434 0.71 9521 1.05 9476 0.71
Best subset Treesize 17.40 2.33 18.60 244 19.00 3.61 8.60 1.65 940 3.02 11.00 295 380 241 580 125 460 2.10
ALR 1230 1.82 1137 146 11.44 233 2259 349 2227 7.49 18.63 4.68 5992 3499 30.85 4.15 46.54 28.69

Splice Accuracy 82.86 3.22 8247 390 8256 2.78 60.26 11.56 60.46 943 7825 4.00 5294 1.56 7245 3.11 58.50 8.68
Best subset Treesize 66.80 7.36 60.80 7.68 67.00 14.14 14.40 16.53 11.60 13.08 33.00 297 1.00 1.82 23.00 436 8.00 8.75
ALR 2.08 024 226 032 220 0.65 6501 50.00 64.59 48.82 396 030 93.11 2.02 572 091 64.68 47.16

Segment  Accuracy 92.58 1.12 92.05 1.06 90.09 1.33 8838 1.15 81.27 326 82.17 3.73 8277 331 84.69 196 80.14 4.40
Best subset Treesize 22.20 2.04 2420 1.66 2340 347 17.00 142 1460 099 1540 1.16 13.40 096 13.80 0.88 13.00 0.48
ALR 950 094 888 053 945 1.69 11.78 0.82 13.61 0.73 1288 0.66 1438 0.73 13.89 0.88 14.70 0.37

Letter Accuracy 71.10 3.65 69.28 2.13 68.77 3.18 6240 246 59.63 0.71 59.52 251 5475 174 5190 3.66 51.58 4.61
Best subset Treesize 507.8 73.22 487.4 38.48 484.2 39.23 302.2 2258 279.0 856 278.6 23.40 210.6 7.92 204.6 17.32 191.8 12.62
ALR 045 0.08 046 004 046 004 070 0.06 075 0.03 0.76 0.01 098 0.04 1.01 0.08 1.07 0.07

Sick Accuracy 97.68 091 97.37 1.51 98.02 0.38 9531 1.22 9488 0.86 9561 1.24 9416 2.13 9442 0.43 9586 1.50
Best subset Treesize 6.60 0.80 7.80 1.67 800 131 380 243 260 204 460 203 220 1.20 1.00 0.64 380 1.72
ALR 2931 3.62 2597 597 24.12 4.76 61.15 3544 7694 33.88 46.71 28.53 73.53 26.27 92.86 1.53 51.51 26.24
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Table A10 Results of top 25% subsets when number of subsets M and number of GA generations G are varied

M=5 M=10 M=15

Dataset G=20 G=30 G=40 G=20 G=30 G=40 G=20 G=30 G=40
Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avge. SE Avg. SE. Avg. SE. Avg. SE
Scheduling Accuracy 97.71 0.42 97.82 0.58 9749 0.63 98.01 0.50 97.58 036 9722 0.61 97.67 076 97.70 0.83 97.44 0.66
Top 25%  Treesize 24.20 2.71 2540 2.78 25.40 5.03 27.80 3.78 2500 496 2820 340 26.60 332 24.60 3.10 2580 3.80
ALR 803 089 766 081 786 150 7.06 09 796 145 693 074 736 095 792 095 7.61 1.05
Splice Accuracy 86.67 0.73 83.53 1.73 8528 1.69 85.71 196 86.20 1.13 8538 1.36 86.18 1.35 81.94 1.66 8530 2.16
Top 25%  Treesize 98.20 6.68 74.80 11.30 74.20 16.94 71.80 18.96 66.80 7.88 75.80 9.18 86.00 15.77 63.60 12.85 83.40 10.72
ALR 1.27 0.08 1.71 028 1.75 034 187 051 188 022 166 0.19 149 029 205 051 151 0.21
Segment  Accuracy 90.76 1.52 9097 1.66 9131 1.89 9263 0.78 90.21 155 89.65 1.57 90.00 1.32 9090 1.64 89.90 0.82
Top 25%  Treesize 28.60 196 31.00 5.17 29.80 490 3340 3.26 2940 5.52 2940 3.80 27.00 571 30.60 337 29.00 3.89
ALR 6.79 044 642 1.06 6.63 09 587 055 677 111 668 084 752 189 639 0.65 678 091
Letter Accuracy 72.62 0.63 7326 1.17 73.64 0.92 7387 0.76 73.53 0.71 73.06 0.83 7230 0.62 7424 098 73.53 1.03
Top 25%  Treesize 631.4 18.97 618.6 14.04 626.2 27.09 623.0 794 629.0 2532 621.8 13.45 629.0 14.59 633.8 15.79 6294 18.29
ALR 032 0.01 032 0.01 032 000 032 0.0 032 001 032 0.0 032 0.0 032 0.0 032 0.01
Sick Accuracy 97.04 0.40 9793 0.57 9742 0.54 98.03 0.69 97.47 0.59 9733 0.61 97.82 0.50 97.82 0.49 97.92 047
Top 25%  Treesize 8.60 136 12.40 4.74 11.60 3.18 12.40 239 1240 3.40 11.60 238 10.20 3.14 12.00 524 12.00 2.84
ALR 19.71 479 1549 6.23 15.67 580 14.17 333 1423 388 1494 4.16 17.86 5.19 16.52 7.19 1472 438
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Table A11 Results of top 50% subsets when number of subsets M and number of GA generations G are varied

M=5 M=10 M=15

Dataset G=20 G=30 G=40 G=20 G=30 G=40 G=20 G=30 G=40
Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avge. SE Avg. SE. Avg. SE. Avg. SE

Scheduling Accuracy 98.23 0.13 98.14 0.58 9842 039 9858 043 9824 0.39 9849 037 9857 0.61 9844 0.52 98.05 0.39
Top 50%  Treesize 39.80 4.12 36.60 3.63 3540 398 41.00 3.47 4020 594 3540 5.04 3740 6.67 41.00 4.15 3540 4.57
ALR 495 051 537 052 55 064 479 041 495 070 560 076 536 091 481 046 559 0.80

Splice Accuracy 90.04 1.19 89.36 0.81 90.02 0.85 91.20 1.30 89.42 094 9090 092 8872 090 8870 1.03 90.28 0.61
Top 50%  Treesize 121.8 8.08 1172 8.46 119.6 14.74 1162 930 1182 20.80 1354 11.66 122.6 11.12 118.6 9.23 131.6 7.49
ALR 1.03 0.07 1.06 0.07 105 0.14 1.08 0.09 108 019 093 0.08 1.02 0.08 1.05 0.09 095 0.05

Segment  Accuracy 93.25 0.51 9422 0.84 9294 1.16 9478 126 9356 0.89 9298 0.77 9253 0.79 9332 048 9239 1.18
Top 50%  Treesize 37.80 6.01 43.40 3.07 43.80 3.55 47.80 232 46.60 4.15 4460 549 40.60 394 3820 223 4460 6.70
ALR 530 097 458 031 449 035 411 0.17 423 036 445 053 485 043 512 027 449 0.69

Letter Accuracy 77.69 1.04 78.05 0.69 7870 0.93 80.17 0.60 79.70 0.75 79.71 0.83 78.62 0.86 80.16 0.52 79.79 0.55
Top 50%  Treesize 937.4 17.77 933.8 7.89 949.8 25.12 1071 29.70 1055 42.17 1042 22.79 1048 26.24 1038 14.30 1039 20.56
ALR 021 0.00 021 000 021 001 019 0.01 019 0.01 0.19 0.00 019 0.00 0.19 0.00 0.19 0.00

Sick Accuracy 97.28 0.29 98.06 0.40 97.80 0.38 9847 0.52 9797 035 98.00 031 9798 043 9833 035 9851 041
Top 50%  Treesize 10.60 3.83 12.00 3.28 12.80 3.58 15.60 4.50 1980 3.35 17.00 2.51 14.00 5.81 1620 537 21.20 5.20
ALR 17.68 547 14.82 3.60 1426 474 1156 456 840 133 10.16 2.13 1540 637 11.29 3.62 829 1.75
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Table A12 Results of top 75% subsets when number of subsets M and number of GA generations G are varied

M=5 M=10 M=15

Dataset G=20 G=30 G=40 G=20 G=30 G=40 G=20 G=30 G=40
Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avg. SE. Avge. SE Avg. SE. Avg. SE. Avg. SE

Scheduling Accuracy 98.56 0.42 9891 0.27 9884 030 9882 038 9859 042 9875 049 98.82 033 9881 032 9851 0.51
Top 75%  Treesize 42.60 2.94 4420 4.09 44.60 3.09 4540 4.15 4980 492 4260 590 4580 6.83 4580 4.60 4820 542
ALR 461 032 446 037 440 028 434 040 398 042 468 0.69 437 0.65 431 039 411 046

Splice Accuracy 91.09 0.77 90.86 1.09 91.62 0.80 92.84 0.80 9233 1.17 9233 0.60 90.79 0.95 90.17 0.80 91.52 0.39
Top 75%  Treesize 146.8 12.12 141.8 4.70 148.0 12.07 146.2 6.68 151.2 10.11 152.8 591 1454 949 148.0 1047 1382 115
ALR 0.85 0.07 088 003 084 0.07 08 0.04 08 006 082 003 08 0.06 084 0.05 09 0.07

Segment  Accuracy 93.63 040 9471 129 9484 099 9519 035 9426 1.10 93.15 141 9339 0.62 9453 1.18 9329 0.72
Top 75%  Treesize 45.00 4.00 4420 9.02 4580 5.09 5340 4.72 5340 3.69 5140 633 4780 226 5220 474 4980 233
ALR 438 039 452 078 432 042 370 031 369 025 387 042 411 0.17 379 034 394 0.16

Letter Accuracy 80.54 0.40 80.87 0.66 81.26 1.07 82.28 0.38 81.89 0.58 82.05 0.50 80.77 0.52 82.80 0.84 82.67 0.79
Top 75%  Treesize 1137 33.58 1145 31.29 1174 3589 1244 1558 1228 27.61 1232 26.84 1304 36.67 1321 21.41 1298 28.17
ALR 0.18 0.01 0.17 0.00 0.17 0.01 0.16 0.00 0.16 0.00 0.16 0.00 0.15 0.00 0.15 0.00 0.15 0.00

Sick Accuracy 97.29 0.24 9849 031 97.82 039 9857 042 9797 037 9814 029 9830 034 9846 032 98.59 0.35
Top 75%  Treesize 13.60 4.08 21.80 3.96 1480 3.80 2340 557 2340 265 2120 4.75 27.00 944 1820 524 2140 3.69
ALR 1448 422 809 106 1252 423 749 152 7.19 061 818 132 854 575 10.65 278 827 1.27
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Table A13 Instance selection vs. different decision tree pruning techniques

Minimum leaf

. . Reduced error Reduced error C4.5 pruning C4.5 pruning
mstance setting  Instance selection . . . . . .
Minimum . pruning with pruning with with subtree with subtree
without without pruning* o o
Dataset leaf . subtree raising subtree replacement raising replacement
) pruning
mstances
Tree Tree Tree Tree Tree Tree
. Accuracy . Accuracy | Accuracy . Accuracy . Accuracy . Accuracy
size size size size size size
5 1637 85.9 857.0 81.6 965 82.8 965 82.7 1499 85.9 1519 85.8
Letter 10 987 83.2 509.0 76.7 647 80.1 647 80.1 931 83.2 943 83.2
15 755 81.3 348.6 73.0 409 75.7 503 76.1 589 79.2 717 81.2
5 61 99.4 33.0 98.6 43 99.1 43 99.1 55 99.4 57 99.4
Scheduling 10 47 99.1 24.2 98.1 37 98.7 37 98.7 41 99.1 45 99.1
15 43 98.9 18.2 97.6 29 97.9 33 98.4 35 98.6 41 98.9
5 332 92.7 172.0 90.5 154 92.7 154 92.7 171 94.4 171 94.4
Splice 10 213 91.2 116.2 87.9 142 90.9 142 90.9 134 92.5 134 92.5
15 156 90.3 66.4 85.3 74 86.5 94 89.4 108 89.9 136 90.8
5 75 96.0 36.2 94.6 43 95.0 43 95.0 59 96.0 59 95.9
Segment 10 47 95.1 25.0 92.4 39 94.9 39 94.9 47 95.0 47 95.1
15 39 95.0 20.6 90.4 31 92.8 31 93.8 33 94.3 39 95.0
5 50 98.9 15.6 98.1 39 98.3 39 98.3 34 98.8 36 98.7
Sick 10 37 98.5 10.0 97.9 17 98.0 17 98.0 28 98.6 28 98.5
15 24 98.3 8.6 97.5 7 97.9 14 97.7 14 98.1 24 98.3

*: Scheduling, segment and sick: use top 50% selected instances; Letter and splice: use top 75% selected instances to obtain good accuracies
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APPENDIX C STATISTICAL SIGNIFICANCE TESTS

Table A14 Statistical significance tests for different M and y in instance selection

Tests for M=51t010 M=10to 15 M=5to015
Dataset different
" I,, Reject? t I,, Reject? t f,, Reject?
Scheduling Accuracy 4.099 1.734 Y 6.860 1.734 Y 10.633  1.734 Y
Treesize  9.730  1.740 Y 5.161  1.746 Y 12.938 1.734 Y
ALR -8.276  1.771 Y -3.353 1.833 Y -4.295  1.833 Y
Splice Accuracy 5939 1.812 Y 1.998  1.833 Y 26.517  1.771 Y
Treesize  9.163  1.782 Y 2.553 1.833 Y 27.322  1.812 Y
ALR -3.978 1.833 Y -1.776  1.833 N -143.170  1.833 Y
Segment  Accuracy 8.159 1.734 Y 5.043  1.796 Y 8.909 1.796 Y
Tree size  6.736  1.746 Y 6.617 1.746 Y 12.445 1.771 Y
ALR -6.040 1.734 Y -7.735  1.734 Y -13.590 1.740 Y
Letter Accuracy  6.161 1.746 Y 7.950 1.746 Y 12.659 1.771 Y
Tree size  8.487 1.796 Y 12.099 1.796 Y 12.765 1.833 Y
ALR -4.472  1.734 Y -6.708 1.734 Y -11.180  1.734 Y
Sick Accuracy  5.060 1.740 Y 1.438 1.761 N 4.844 1.782 Y
Treesize  3.500 1.796 Y 1.886  1.771 Y 9.648 1.746 Y
ALR -2.835 1.833 Y -0.882  1.740 N -5.265  1.833 Y
Best to Top 25% Top 25% to Top 50% Top 50% to Top 75%
Dataset Tests for
different y t f,, Reject? t f,, Reject? t f,, Reject?
Scheduling Accuracy  6.883  1.740 Y 2963  1.740 Y 1.118 1.734 N
Treesize  14.585 1.782 Y 8.080  1.734 Y 2.545 1.740 Y
ALR 13.563 1.812 Y 7.385  1.782 Y 2.795 1.734 Y
Splice Accuracy  6.824  1.812 Y 7.291 1.753 Y 3.315 1.753 Y
Treesize  7.213 1.734 Y 6.637 1.771 Y 8.277 1.746 Y
ALR 3.991 1.833 Y 4961 1.812 Y 6.325 1.833 Y
Segment  Accuracy  9.209 1.746 Y 4.558 1.753 Y 0.930 1.796 N
Treesize  14.467 1.782 Y 11.321 1.746 Y 3.384 1.771 Y
ALR 18.657 1.740 Y 9.000 1.796 Y 3.508 1.746 Y
Letter Accuracy 13.854 1.796 Y 19.922  1.740 Y 9.209 1.746 Y
Treesize 42373 1.796 Y 46.118 1.812 Y 16.317 1.761 Y
ALR 12.586 1.833 Y 22.361 1.734 Y 0 1.734 N
Sick Accuracy  6.146  1.761 Y 1.838  1.746 Y 0.494 1.740 N
Treesize  8.013 1.734 Y 1.984 1.761 Y 3.433 1.740 Y
ALR 4.180 1.833 Y 1.452  1.746 N 2.680 1.796 Y
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APPENDIX D DIFFERENT CROSSOVER OPERATIONS

Table A15 GA-based instance selection using 1-point crossover
1-point Best Top 25% Top 50% Top 75%
crossover Avg. S.E. Avg. SE. Avg. S.E. Avg. S.E.
Scheduling Accuracy 959 0.8 972 06 983 04 984 03

Treesize 122 1.0 282 45 398 33 414 23

ALR 159 13 82 16 49 04 47 03

Splice  Accuracy 76.3 2.7 851 23 909 1.6 917 0.5
Treesize 352 0.6 87.0 11.6 1268 9.1 153.8 13.5

ALR 37 01 15 02 1.0 01 09 0.1

Segment Accuracy 87.3 2.5 898 1.5 925 1.0 934 1.1
Treesize 17.6 0.9 348 59 488 3.0 582 32

ALR 120 06 63 12 43 03 41 02

Letter Accuracy 66.8 35 721 1.0 793 0.6 814 038
Treesize 317.4 152 640.2 23.6 1079.2 37.7 1247.8 30.6

ALR 08 00 03 00 02 00 02 00

Sick Accuracy 956 0.7 977 0.6 980 06 981 0.6
Treesize 5.0 04 136 29 162 3.1 250 9.1

ALR 350 04 116 17 108 29 88 2.8

Dataset

Table A16 GA-based instance selection using 2-point crossover
2-point Best Top 25% Top 50% Top 75%
crossover Avg. S.E. Avg. SE. Avg. S.E. Avg. S.E.
Scheduling Accuracy 963 0.6 980 05 986 04 988 04

Treesize 8.6 1.7 27.8 3.8 41.0 35 454 42

ALR 226 35 71 09 48 04 43 04

Splice  Accuracy 60.3 11.6 857 20 912 1.3 928 0.8
Treesize 144 165 71.8 19.0 1162 93 1462 6.7

ALR 65.0 50.0 19 0.5 1.1 01 09 0.0

Segment Accuracy 884 1.2 926 08 948 13 952 04
Treesize 17.0 1.4 334 33 478 23 534 4.7

ALR 11.8 08 59 06 41 02 37 03

Letter Accuracy 624 2.5 739 08 802 06 823 04
Treesize 302.2 22.6 623.0 7.9 1071.2 29.7 12443 15.6

ALR 07 01 03 00 02 00 02 00

Sick Accuracy 953 1.2 980 0.7 985 05 986 04
Treesize 3.8 24 124 24 156 45 234 56

ALR 61.2 354 142 33 116 46 75 1.5

Dataset
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APPENDIX D DIFFERENT CROSSOVER OPERATIONS

(CONTINUED)
Table A17 GA-based instance selection using uniform crossover
uniform Best Top 25% Top 50% Top 75%
Dataset

crossover Avg. S.E. Avg. S.E. Avg. S.E. Avg. S.E.
Scheduling Accuracy 949 0.7 979 05 981 0.1 98.6 04
Treesize 8.6 0.8 280 2.5 414 46 478 2.7

ALR 219 20 84 08 48 06 41 02

Splice  Accuracy 689 93 848 08 904 1.1 908 0.3
Treesize 29.2 145 720 7.9 126.6 10.5 1472 12.1

ALR 240 408 1.8 0.2 1.0 01 09 0.1

Segment Accuracy 86.0 3.1 918 1.0 940 1.0 947 0.8
Treesize 162 2.9 356 3.7 482 68 554 4.7

ALR 125 18 6.0 06 45 06 38 03

Letter Accuracy 599 1.8 721 06 795 04 812 05
Treesize 286.6 11.7 629.4 14.1 1072.2 23.5 1267.0 354

ALR 07 00 03 00 02 00 02 00

Sick Accuracy 95.1 1.9 979 05 982 05 984 04
Treesize 4.6 2.1 132 35 182 7.0 254 49

ALR 473 286 185 6.2 108 4.8 85 1.3
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APPENDIX E DIFFERENT SELECTION OPERATIONS

Table A18 GA-based instance selection using ranking selection and 2-point crossover

Dataset Ranking Best Top 25% Top 50% Top 75%
selection Avg. S.E. Avg. S.E. Avg. SE. Avg. SE
Scheduling Accuracy 97.7 0.7 986 04 992 03 994 0.2
Treesize 183 42 31.7 3.1 523 57 597 172
Splice Accuracy 859 2.1 89.1 0.8 929 06 930 0.5
Tree size 49.8 139 1054 4.7 143.6 6.4 163.0 10.1
Segment Accuracy 91.8 0.8 937 06 959 0.7 968 0.7
Treesize 24.6 14 354 57 446 3.1 564 62

Letter Accuracy 61.7 4.0 800 0.7 867 04 889 03
Tree size 248.6 43.9 810.8 32.7 1221.4 439 1547.2 329

Sick Accuracy 979 0.2 981 03 984 03 987 0.2
Treesize 7.6 14 113 34 177 29 254 24

Table A19 GA-based instance selection using roulette wheel selection and 2-point crossover

Dataset Roulette wheel Best Top 25% Top 50% Top 75%
selection Avg. SE. Avg. S.E. Avg. SE. Avg. SE
Scheduling Accuracy 963 0.6 980 05 986 04 988 04
Tree size 86 1.7 27.8 3.8 41.0 35 454 42
Splice Accuracy 60.3 11.6 8.7 20 912 1.3 928 0.8
Tree size 144 165 71.8 19.0 1162 93 1462 6.7
Segment Accuracy 8.4 12 926 08 948 13 952 04
Tree size 170 1.4 334 33 478 23 534 47
Letter Accuracy 624 25 739 08 802 0.6 823 04
Tree size 302.2 22.6 623.0 7.9 1071.2 29.7 12443 15.6
Sick Accuracy 953 12 98.0 0.7 985 05 986 04
Tree size 3.8 24 124 24 156 45 234 56
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APPENDIX F HISTOGRAMS BEFORE AND AFTER

INSTANCE SELECTION

FIGURE A1-A12 (PAGE 109-120)
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Figure A1 Histograms for sick dataset before instance selection
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Figure A2 Histograms for sick dataset after instance selection using best subset
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Figure A3 Histograms for letter dataset before instance selection
P =i

=
#-box w-biox width high
I ‘ | I | ‘ | I | B | ! | I ‘ ‘ n ‘ | ]
SRRRE g 1ii it
|| | | ] =g 2 S = = =
e b g 20, = w5 = a B 0 B & E ! = BS: co ol ol v _
T T 1 - T T 1 T T 1
75 15 o : o 7.5 15 o 7.5 15
onpix x-bar w-bar w2bar
- n |
sy CF I I 1 ] 13 I I =
= ] = - | - R a o=
!;Ill::;!-__ N | =.lll!..__ __ll|!=I-: ... B Bl R D00 e wweans
r T 1 r T 1 r T 1 T T 1
i 75 15 i T 15 i 7.5 15 i 75 15
v2bar wybar w2ybr sy 2br
| |‘-:-|| } i H |
il . ' SELANY | I
| | | | ] = g 2 | |
-] = s BB 0°5%:- _ _ _ || «a___= ! il S5 8 = ! i | - . | I I s a0t E B m - N | [ | 1 Bs &
T T 1 T T T 1
o Fil 15 1} TA 15 1} .4 15 o 7.5 15
x-ege HEguy y-ege yegyE
| : ‘ | ‘ | ! | I ! i
: I
_ A
| | I ] ! ! I ] I | | I ERLEE ! I - .- !
i0s 52 00w .. i b, B 0s 5 BHsa - .« BT i st
T T 1 T T 1 T T 1 r T 1
1} TA 15 o TA 15 o T.A 15 1] 7.5 15

class

|| | | ||||||||||||||||||| Letter dataset

- WWW.manaraa.com

ITI



Figure A4 Histograms for letter dataset after instance selection using top 50% subsets
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Figure A5 Histograms for scheduling dataset before instance selection
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Figure A6 Histograms for scheduling dataset after instance selection using best subset
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Figure A7 Histograms for segment dataset before instance selection
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Figure A8 Histograms for segment dataset after instance selection using top 50% subsets
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Figure A9 Histograms for splice dataset before instance selection (part I)
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Figure A10 Histograms for splice dataset before instance selection (part Il)
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Figure A11 Histograms for splice dataset after instance selection using top 50% subsets (part I)
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Figure A12 Histograms for splice dataset after instance selection using top 50% subsets (part Il)
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APPENDIX G TOUR PLOTS AND DECISION TREE

VISUALIZATIONS

FIGURE A13-A20 (PAGE 122-129)
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Figure A13 Tour plots for scheduling dataset before/after instance selection

Scheduling dataset: Before instance selection Adter instance selection
Note: Blue circle points represent "no” class and green cross points represent "yes" class.
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Figure A14 Decision trees for scheduling dataset before/after instance selection
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Weight_2; the tree has 35 leaves and 69 nodes.

two classes are better separated in the tour plot.

Decision tree from selecied instances

Before instance selection, the decision tree splits on 6 attributes: Job_2, Due_Date_1, Due_Date_2, Release_Time_2, Processing_time_2 and

After instance selection, the decision tree splits on 3 attributes: Job_2, Due_Date_1 and Due_Date_2; the tree has 5 leaves and 9 nodes. And the
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Figure A15 Example tour plots for splice dataset before/after instance selection showing the separation between “N” and other classes

Class=0ther

Splice dataset: Before instance selection After instance selection
Note: Blue circle points represent "N" class, green cross points represent the other two classes (El and IE)
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Figure A16 Example decision trees for splice dataset before/after instance selection showing the classification between “N” and other classes
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Decision tree from entire dataset

Decision tree from selected instances

® Before instance selection, the decision tree splits on 7 attributes: attribute 30, attribute_29, attribute_32, attribute_31, attribute_35, attribute_20, and

attribute_34; the tree has 93 leaves and 115 nodes.
® After instance selection, the decision tree splits on 9 attributes: attribute_30, attribute_28, attribute_29, attribute_32, attribute_18, attribute_5,

attribute_34, attribute_35, and attribute_31; the tree has 64 leaves and 85 nodes. Class “N” and the other two classes (“El” and “IE”) are better

separated in the tour plot.
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Figure A17 Tour plots for segment dataset before/after instance selection
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Mote: Blue circle points represent “foliage” class, blue square points represent "cement” class, green cross points represent “grass”
class, green plus points represent "brickface" class, grey solid circle points represent “"path” class, blue solid square points represent
"window" class, and green solid square points represent "sky" class
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Figure A18 Decision trees for segment dataset before/after instance selection
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Decision tree from entire dataset

Decision tree from selecied instances

Before instance selection, the decision tree splits on 11 attributes: region-centroid-row, rawred-mean, hue-mean, saturation-mean,
region-centroid-col, exred-mean, rawblue-mean, exgreen-mean, vedge-mean, rawgreen-mean and exblue-mean; the tree has 39 leaves and 77

nodes.

After instance selection, the decision tree splits on 5 attributes: region-centroid-row, rawred-mean, exgreen-mean, intensity-mean and hue-mean;
the tree has 9 leaves and 17 nodes. And the three classes are better separated in the tour plot.
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Figure A19 Example tour plots for letter dataset before/after instance selection showing the separation between “A” and other classes

Letter dataset: Before instance selection After instance selection
Note: Blue square points represent "A" class and green dots represent the other 25 classes.
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Figure A20 Example decision trees for letter dataset before/after instance selection showing the classification between “A” and other classes
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Decision tree from entire dataset Decision tree from selected instances
Before instance selection, the decision tree splits on 12 attributes: x2ybr, y2bar, x-bar, y-bar, x-ege, x2bar, xybar, y-ege, onpix, x-box, yegvx and

xegvy; the tree has 50 leaves and 99 nodes.
After instance selection, the decision tree splits on 6 attributes: x2ybr, y2bar, xegvy, y-bar, x2bar and xybar; the tree has 7 leaves and 13 nodes.

Class “A” and other classes are better separated in the tour plot.
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APPENDIX H DECISION TREE ON UNBALANCED DATA

Table A20 Performance of the decision tree on scheduling data before/after instance selection

Scheduling data

Before instance selection
(10-fold cross validation)

10-fold cross validation

After instance selection (using best subset)

Independent test set

confusion matrix
Yes No Yes No Yes No
Classified as yes 6719 17 447 5 2265 63
Classified as no 14 390 1 23 7 45
True positive rate (Recall) 99.8% 95.8% 99.8% 82.1% 99.7% 41.7%
False positive rate 4.2% 0.2% 17.9% 0.2% 58.3% 0.3%
Precision 99.7% 96.5% 98.9% 95.8% 97.3% 86.5%
Kappa statistic 0.96 0.88 0.55
Overall accuracy 99.6% 98.7% 97.1%

Scheduling data

Confusion matrix

Before instance selection
(10-fold cross validation)

After instance selection (using best subset)

Incorporate recall into GA fitness function

10-fold cross validation

Independent test set

Yes No Yes No Yes No

Classified as yes 6719 17 440 5 2193 18

Classified as no 14 390 2 29 79 90
True positive rate (Recall) 99.8% 95.8% 99.5% 85.3% 96.5% 83.3%
False positive rate 4.2% 0.2% 14.7% 0.5% 16.7% 3.5%
Precision 99.7% 96.5% 98.9% 93.5% 99.2% 53.3%

Kappa statistic 0.96 0.88 0.63
Overall accuracy 99.6% 98.5% 95.9%

Table A21 Performance of the decision tree on splice data before/after instance selection

Before instance selection

After instance selection (using top 50% subsets)

Splice data Sy _—
) ) (10-fold cross validation) | 10-fold cross validation Independent test set
confusion matrix
EIl IE N EIl IE N EIl IE N
Classified as EI 737 40 34 232 19 24 235 19 11
Classified as IE 14 702 59 14 225 24 4 203 38
Classified as N 16 26 1562 11 8 503 12 14 528
True positive rate (Recall) 96.1% 91.4% 94.4% | 90.3% 89.3% 91.3% 93.6% 86.0% 91.5%
False positive rate 31%  3.0%  2.7% 54% 4.7% 3.7% 37% 51% 53%
Precision 90.9% 90.6% 97.4% | 84.4% 85.6% 96.4% 88.7% 82.9% 95.3%
Kappa statistic 0.90 0.84 0.85
Overall accuracy 94.1% 90.6% 90.8%
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